Zhen-Ming Ge
East China Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhen-Ming Ge.
Gcb Bioenergy | 2011
Xiao Zhou; Zhen-Ming Ge; Seppo Kellomäki; Kai-Yun Wang; Heli Peltola; Pertti J. Martikainen
This work examined the effects of elevated CO2 and temperature and water regimes, alone and in interaction, on the leaf characteristics [leaf area (LA), specific leaf weight (SLW), leaf nitrogen content (NL) based on LA], photosynthesis (light‐saturated net carbon fixation rate, Psat) and carbon storage in aboveground biomass of leaves (Cl) and stem (Cs) for a perennial reed canary grass (Phalaris arundinacea L., Finnish local cultivar). For this purpose, plants were grown under different water regimes (ranging from high to low soil moisture) in climate‐controlled growth chambers under the elevated CO2 and/or temperature (following a factorial design) over a whole growing season (May–September in 2009). The results showed that the elevated temperature increased the leaf growth, photosynthesis and carbon storage of aboveground biomass the most in the early growing periods, compared with ambient temperature. However, the plant growth declined rapidly thereafter with a lower carbon storage at the end of growing season. This was related to the accelerated phenology regulation and consequent earlier growth senescence. Consequently, the elevation of CO2 increased the Psat, LA and SLW during the growing season, with a significant concurrent increase in the carbon storage in aboveground biomass. Low soil moisture decreased the Psat, leaf stomatal conductance, LA and carbon storage in above ground biomass compared with high and normal soil moisture. This water stress effect was the largest under the elevated temperature. The elevated CO2 partially mitigated the adverse effects of high temperature and low soil moisture. However, the combination of elevated temperature and CO2 did not significantly increase the carbon storage in aboveground biomass of the plants.
Photosynthetica | 2012
Zhen-Ming Ge; Xiao Zhou; Seppo Kellomäki; Heli Peltola; Pertti J. Martikainen; Kai-Yun Wang
The aim of this work was to study the acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) grown in controlled environment chambers under elevated temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) with varying soil water regimes. More specifically, we studied, during two development stages (early: heading; late: florescence completed), how the temperature response of light-saturated net photosynthetic rate (Psat), maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (Vcmax) and potential rate of electron transport (Jmax) acclimatized to the changed environment. During the early growing period, we found a greater temperature-induced enhancement of Psat at higher measurement temperatures, which disappeared during the late stage. Under elevated growth temperature, Vcmax and Jmax at lower measurement temperatures (5–15°C) were lower than those under ambient growth temperature during the early period. When the measurements were done at 20–30°C, the situation was the opposite. During the late growing period, Vcmax and Jmax under elevated growth temperature were consistently lower across measurement temperatures. CO2 enrichment significantly increased Psat with higher intercellular CO2 compared to ambient CO2 treatment, however, elevated CO2 slightly decreased Vcmax and Jmax across measurement temperatures, probably due to down-regulation acclimation. For two growing periods, soil water availability affected the variation in photosynthesis and biochemical parameters much more than climatic treatment did. Over two growing periods, Vcmax and Jmax were on average 36.4 and 30.6%, respectively, lower with low water availability compared to high water availability across measurement temperatures. During the late growing period, elevated growth temperature further reduced the photosynthesis under low water availability. Vcmax and Jmax declined along with the decrease in nitrogen content of leaves as growing period progressed, regardless of climatic treatment and water regime. We suggest that, for grass species, seasonal acclimation of the photosynthetic parameters under varying environmental conditions needed to be identified to fairly estimate the whole-life photosynthesis.
Climatic Change | 2013
Zhen-Ming Ge; Seppo Kellomäki; Heli Peltola; Xiao Zhou; Hannu Väisänen; Harri Strandman
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.
Photosynthetica | 2011
Zhen-Ming Ge; Xiao Zhou; Seppo Kellomäki; Kai-Yun Wang; Heli Peltola; Pertti J. Martikainen
The effects of elevated growth temperature (ambient + 3.5°C) and CO2 (700 μmol mol−1) on leaf photosynthesis, pigments and chlorophyll fluorescence of a boreal perennial grass (Phalaris arundinacea L.) under different water regimes (well watered to water shortage) were investigated. Layer-specific measurements were conducted on the top (younger leaf) and low (older leaf) canopy positions of the plants after anthesis. During the early development stages, elevated temperature enhanced the maximum rate of photosynthesis (Pmax) of the top layer leaves and the aboveground biomass, which resulted in earlier senescence and lower photosynthesis and biomass at the later periods. At the stage of plant maturity, the content of chlorophyll (Chl), leaf nitrogen (NL), and light response of effective photochemical efficiency (ΦPSII) and electron transport rate (ETR) was significantly lower under elevated temperature than ambient temperature in leaves at both layers. CO2 enrichment enhanced the photosynthesis but led to a decline of NL and Chl content, as well as lower fluorescence parameters of ΦPSII and ETR in leaves at both layers. In addition, the down-regulation by CO2 elevation was significant at the low canopy position. Regardless of climate treatment, the water shortage had a strongly negative effect on the photosynthesis, biomass growth, and fluorescence parameters, particularly in the leaves from the low canopy position. Elevated temperature exacerbated the impact of water shortage, while CO2 enrichment slightly alleviated the drought-induced adverse effects on Pmax. We suggest that the light response of ΦPSII and ETR, being more sensitive to leaf-age classes, reflect the photosynthetic responses to climatic treatments and drought stress better than the fluorescence parameters under dark adaptation.
Journal of Geophysical Research | 2015
Zhen-Ming Ge; Haiqiang Guo; Bin Zhao; Liquan Zhang
The exotic Spartina alterniflora from North America has been rapidly invading the entire Chinese coast, while the impacts of plant invasion on the gross (GPP) and net primary production (NPP) of the coastal salt marshes were less known. In this study, we investigated the photosynthetic performance, leaf characteristics, and primary production of the exotic C4 grass and the dominant native C3 grass (Phragmites australis) in two marsh mixtures (equipped with eddy covariance systems) in the Yangtze Estuary. The light-saturated photosynthetic rate and annual peak leaf area index (LAI) of S. alterniflora was higher than that of P. australis throughout the growing season. The leaf nitrogen content of P. australis declined sharper during the latter growing season than that of S. alterniflora. The leaf-to-canopy production model with species-specific (C3 and C4 types) parameterizations could reasonably simulate the daily trends and annual GPP amount against the 3 year flux measurements from 2005 to 2007, and the modeled NPP agreed with biomass measurements from the two species during 2012. The percentage contributions of GPP between S. alterniflora and P. australis were on average 5.82:1 and 2.91:1 in the two mixtures, respectively. The annual NPP amounts from S. alterniflora were higher by approximately 1.6 times than that from P. australis. Our results suggested that higher photosynthesis efficiency, higher LAI, and longer growing season resulted in greater GPP and NPP in the exotic species relative to the native species. The rapid expansion rate of S. alterniflora further made it the leading contributor of primary production in the salt marsh.
Photosynthetica | 2012
Xiao Zhou; Zhen-Ming Ge; Seppo Kellomäki; Kai-Yun Wang; Heli Peltola; Pertti J. Martikainen; Matti Lemettinen; Alpo Hassinen; R. Ikonen
This paper describes the technical information and performance of a new multi-objective chamber system enabling the control of environmental variables (e.g., temperature, CO2, air humidity, wind speed, and UV-B radiation) for understanding plant responses to climate change. Over a whole growing season, four different climate scenarios were evenly programmed into the system’s 16 chambers as ambient environment (AMB), elevated temperature (ET), elevated CO2 concentration (EC) and elevated temperature and CO2 concentration (ETC). Simultaneously, the chamber effects were assessed regarding the physiological responses and growth of a boreal perennial grass (reed canary grass, Phalaris arundinacea L.). During the growing season, the chamber system provided a wide variety of climatic conditions for air temperature (Ta), relative humidity (RH) and CO2 concentration (Ca) in the AMB chambers following outside conditions. The target temperature (+3.5°C) was achieved to a good degree in the ET and ETC chambers, being on average 3.3°C and 3.7°C higher than ambient conditions, respectively. The target concentration of CO2 (700 ppm) was also well achieved in the EC and ETC chambers, being on average 704 ppm and 703 ppm, respectively. The stable airflow condition inside all of the chambers provided a homogeneous distribution of gases and temperature. The decreases in RH and increases in vapour pressure deficit (VPD) in the elevated temperature chambers were also maintained at a low level. Chamber effects were observed, with some physiological and growth parameters of plants being significantly lower in the AMB chambers, compared to outside conditions. The plant growth was negatively affected by the reduced radiation inside the chambers.
Photosynthetica | 2014
Zhen-Ming Ge; Liquan Zhang; Lin Yuan; Chao Zhang
The invasion of Spartina alterniflora along the coasts of China has allowed this C4 grass to outcompete often much of the native, salt marsh vegetation, such as Phragmites australis (C3 grass), in the Yangtze Estuary. In this study, native grass, P. australis, and non-native grass, S. alterniflora, were grown in fresh and saline water (moderate salinity of 15‰ and high salinity of 30‰) to compare the effects of salinity on photosynthetic and biochemical parameters in combination with measurement temperatures. The C4 grass, S. alterniflora, showed a greater CO2 assimilation rate than P. australis, across the tested temperatures. The net photosynthetic rate declined significantly with increasing salinity as a result of inhibited stomatal conductance together with a greater decrease in the maximum rate of electron transport (Jmax). In P. australis, salt treatments shifted the optimum temperatures for the maximum rate of carboxylation by Rubisco (Vcmax) and Jmax to lower temperatures. S. alterniflora showed a greater salt tolerance to moderate stress than that of the native grass, with lower sensitivity of Vcmax, Jmax, and the maximum rate of phosphoenolpyruvate carboxylation. Both moderate and high stress decreased significantly stomatal conductance of S. alterniflora; high salinity reduced significantly photosynthetic efficiency and Jmax. Our findings indicated that the combination of stomatal conductance, enzyme activity, and electron transport affected the photosynthetic performance of the plants in response to salt treatments. The success of S. alterniflora could be probably attributed to its C4 photosynthetic pathway and the tolerance to moderate salinity. In this study, a modified parameterization of the photosynthetic model was suggested to support a more reasonable simulation of photosynthesis under salt stress.
Annals of Forest Science | 2011
Zhen-Ming Ge; Seppo Kellomäki; Heli Peltola; Xiao Zhou; Kai-Yun Wang; Hannu Väisänen
Abstract• IntroductionBased on previous studies, it is assumed that the growth of Norway spruce (Picea abies) in southern Finland (61°N) may decrease under the changing climate due to the increasing soil water deficit, without management.• Materials and methodsA process-based ecosystem model was employed to study how varying thinning scenarios (nine different plus one unthinned) may affect the net carbon uptake, total stem wood growth, and timber production in Norway spruce stands on three sites with varying soil water availability under the changing climate.• Results and discussionWe found that the carbon uptake and total stem wood growth were lower due to reduced soil moisture. This was especially the case on the site with low water moisture if no thinning was applied. Thinning increased the amount of water infiltrating into the soil profile, as well as the availability of soil water, regardless of the site. The current thinning guidelines (BT (0, 0)) may need to be modified under the changing climate for Norway spruce, especially on sites with poor soil water conditions. On these sites, the thinning scenarios with frequent thinning could simultaneously help to increase the growth rate of trees and to mitigate the negative impacts of increasing soil water deficit on tree growth. On the sites with high soil water availability, the thinning scenarios with moderate intensive thinning or with delayed first thinning may simultaneously provide higher timber yield and carbon stock than if the current thinning recommendations are applied.
Journal of Geophysical Research | 2015
Zhen-Ming Ge; Hao-Bin Cao; Lifang Cui; Bin Zhao; Liquan Zhang
To explore the effects of sea level rise (SLR), sediment reduction (SR), and saltwater intrusion (SWI) on the vegetation patterns and primary production of one exotic (Spartina alterniflora) and two native dominant (Scirpus mariqueter and Phragmites australis) species in the coastal wetlands of East China, range expansion monitoring and stress experiments were conducted, followed by model prediction. After a rapid invasion period, the expansion rate of S. alterniflora slowed down due to the decreasing availability of suitable habitat under prolonged inundation. SLR was shown to decrease the colonization of S. alterniflora and the native P. australis up to 2100. In contrast, the native S. mariqueter that has a high tolerance of inundation increased in area following SLR, due to a reduction in competition from S. alterniflora in low-lying habitats and even recolonized areas previously invaded by the exotic species. The combination of SLR and SR resulted in further degradation of S. alterniflora and P. australis, while the area of S. mariqueter was not reduced significantly. The decrease in the area of vegetation would reduce the gross primary production under SLR and SR. SWI exacerbates the impacts, especially for P. australis, because S. alterniflora and S. mariqueter have a higher tolerance of salinity. Thus, the coastal vegetation pattern was predicted to be modified due to species-specific adaption to changed geophysical features. This study indicated that the native species better adapted to prolonged inundation and increased salinity might once again become key contributors to primary production on the muddy coasts of East China.
Acta Ecologica Sinica | 2006
Zhen-Ming Ge; Tianhou Wang; Xiao Zhou; Wenyu Shi
Abstract Coastal regions are important habitats for migratory shorebirds. The aim of the study is to understand habitat use by migratory shorebirds and to develop a conservation strategy in the sustainable use of wetlands. From March 2004 to January 2005, we conducted a seasonal shorebirds census in ten coastal habitats along the South Yangtze River mouth and North Hangzhou Bay, simultaneously examining the relative seasonal abundance of shorebirds and their spatial distribution. A total of 25 species were identified, the dominant seasonal species were Great Knot ( Calidris tenuirostris ), Sharp-tailed Sandpiper ( Calidris alpine ) and Red-necked Stint ( Calidris ruficollis ) in spring; Kentish Plover ( Charadrius alexandrinus ), Common Greenshank( Tringa nebularia ) and Lesser Sand Plover ( Charadrius mongolus ) in summer; Kentish Plover, Red-necked Stint and Common Greenshank in autumn; Dunlin( Calidris alpine ), Kentish Plover and Marsh Sandpiper ( Tringa stagnatilis ) in winter. These species accounted for more than 85% of the total shorebirds. The numbers of shorebirds counted was highest in spring and then in autumn, winter and summer respectively. Among the four seasons, there were few significant differences in the number of bird species between the sites outside the seawall (intertidal mudflat) and the sites inside the seawall (artificial wetland), but the average density of shorebirds was obviously different. The habitat-selection analysis of the environmental factors (outside and inside the seawall) impacting on the shorebird community was made in the 10 study sites with Canonical Correspondence Analysis. The study results indicated that: (1) Outside the seawall, the widths of the total intertidal mudflat and bare mudflat were the key factors affecting the shorebirds; the proportion of bulrush ( Scirpus×mariquete ) covering and supertidal mudflat width had a positive correlation with the abundance of birds, while human disturbance and the proportion of both reed ( Phragmites communis ) and smooth cord-grass ( Spartina alterniflora ) covering in total surveyed areas had negative impacts on bird numbers; (2) Inside the seawall, the proportions of areas with shallow water and mudflats occupying the total surveyed area were key factors influencing the number of birds; the size of the bulrush area should have a positive impact on the appearance of shorebirds. Habitats with heavy human disturbance, dense reed and smooth cord-grass or a high water level were not conducive to be inhabited by shorebirds.