Zhen-Yong Keck
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhen-Yong Keck.
Journal of Virology | 2004
Anne Op De Beeck; Cécile Voisset; Birke Bartosch; Yann Ciczora; Laurence Cocquerel; Zhen-Yong Keck; Steven K. H. Foung; François-Loïc Cosset; Jean Dubuisson
ABSTRACT Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.
Journal of Biological Chemistry | 2006
Marlène Dreux; Thomas Pietschmann; Christelle Granier; Cécile Voisset; Sylvie Ricard-Blum; Philippe-Emmanuel Mangeot; Zhen-Yong Keck; Steven K. H. Foung; Ngoc Vu-Dac; Jean Dubuisson; Ralf Bartenschlager; Dimitri Lavillette; François-Loïc Cosset
Hepatitis C virus (HCV) exploits serum-dependent mechanisms that inhibit neutralizing antibodies. Here we demonstrate that high density lipoprotein (HDL) is a key serum factor that attenuates neutralization by monoclonal and HCV patient-derived polyclonal antibodies of infectious pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins and cell culture-grown genuine HCV (HCVcc). Over 10-fold higher antibody concentrations are required to neutralize either HCV-enveloped particles in the presence of HDL or human serum, and less than 3–5-fold reduction of infectious titers are obtained at saturating antibody concentrations, in contrast to complete inhibition in serum-free conditions. We show that HDL interaction with the scavenger receptor BI (SR-BI), a proposed cell entry co-factor of HCV and a receptor mediating lipid transfer with HDL, strongly reduces neutralization of HCVpp and HCVcc. We found that HDL activation of target cells strongly stimulates cell entry of viral particles by accelerating their endocytosis, thereby suppressing a 1-h time lag during which cell-bound virions are not internalized and can be targeted by antibodies. Compounds that inhibit lipid transfer functions of SR-BI fully restore neutralization by antibodies in human serum. We demonstrate that this functional HDL/SR-BI interaction only interferes with antibodies blocking HCV-E2 binding to CD81, a major HCV receptor, reflecting its prominent role during the cell entry process. Moreover, we identify monoclonal antibodies targeted to epitopes in the E1E2 complex that are not inhibited by HDL. Consistently, we show that antibodies targeted to HCV-E1 efficiently neutralize HCVpp and HCVcc in the presence of human serum.
Journal of Virology | 2007
François Helle; Anne Goffard; Virginie Morel; Gilles Duverlie; Jane A. McKeating; Zhen-Yong Keck; Steven K. H. Foung; François Penin; Jean Dubuisson; Cécile Voisset
ABSTRACT Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.
Journal of Virology | 2010
Dorothea Bankwitz; Eike Steinmann; Julia Bitzegeio; Sandra Ciesek; Martina Friesland; Eva Herrmann; Mirjam B. Zeisel; Thomas Baumert; Zhen-Yong Keck; Steven K. H. Foung; Eve-Isabelle Pécheur; Thomas Pietschmann
ABSTRACT The variability of the hepatitis C virus (HCV), which likely contributes to immune escape, is most pronounced in hypervariable region 1 (HVR1) of viral envelope protein 2. This domain is the target for neutralizing antibodies, and its deletion attenuates replication in vivo. Here we characterized the relevance of HVR1 for virus replication in vitro using cell culture-derived HCV. We show that HVR1 is dispensable for RNA replication. However, viruses lacking HVR1 (ΔHVR1) are less infectious, and separation by density gradients revealed that the population of ΔHVR1 virions comprises fewer particles with low density. Strikingly, ΔHVR1 particles with intermediate density (1.12 g/ml) are as infectious as wild-type virions, while those with low density (1.02 to 1.08 g/ml) are poorly infectious, despite quantities of RNA and core similar to those in wild-type particles. Moreover, ΔHVR1 particles exhibited impaired fusion, a defect that was partially restored by an E1 mutation (I347L), which also rescues infectivity and which was selected during long-term culture. Finally, ΔHVR1 particles were no longer neutralized by SR-B1-specific immunoglobulins but were more prone to neutralization and precipitation by soluble CD81, E2-specific monoclonal antibodies, and patient sera. These results suggest that HVR1 influences the biophysical properties of released viruses and that this domain is particularly important for infectivity of low-density particles. Moreover, they indicate that HVR1 obstructs the viral CD81 binding site and conserved neutralizing epitopes. These functions likely optimize virus replication, facilitate immune escape, and thus foster establishment and maintenance of a chronic infection.
Journal of General Virology | 2009
Jeroen Witteveldt; Matthew J. Evans; Julia Bitzegeio; George Koutsoudakis; Ania M. Owsianka; Allan G. N. Angus; Zhen-Yong Keck; Steven K. H. Foung; Thomas Pietschmann; Charles M. Rice; Arvind H. Patel
Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1ΔE1E2-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1W529A was unaffected by the presence of neutralizing antibodies that inhibit E2–CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission.
Journal of Virology | 2004
Zhen-Yong Keck; Anne Op De Beeck; Kenneth G. Hadlock; Jinming Xia; Ta-Kai Li; Jean Dubuisson; Steven K. H. Foung
ABSTRACT Mechanisms of virion attachment, interaction with its receptor, and cell entry are poorly understood for hepatitis C virus (HCV) because of a lack of an efficient and reliable in vitro system for virus propagation. Infectious HCV retroviral pseudotype particles (HCVpp) were recently shown to express native E1E2 glycoproteins, as defined in part by HCV human monoclonal antibodies (HMAbs) to conformational epitopes on E2, and some of these antibodies block HCVpp infection (A. Op De Beeck, C. Voisset, B. Bartosch, Y. Ciczora, L. Cocquerel, Z. Y. Keck, S. Foung, F. L. Cosset, and J. Dubuisson, J. Virol. 78:2994-3002, 2004). Why some HMAbs are neutralizing and others are nonneutralizing is looked at in this report by a series of studies to determine the expression of their epitopes on E2 associated with HCVpp and the role of antibody binding affinity. Antibody cross-competition defined three E2 immunogenic domains with neutralizing HMAbs restricted to two domains that were also able to block E2 interaction with CD81, a putative receptor for HCV. HCVpp immunoprecipitation showed that neutralizing and nonneutralizing domains are expressed on E2 associated with HCVpp, and affinity studies found moderate-to-high-affinity antibodies in all domains. These findings support the perspective that HCV-specific epitopes are responsible for functional steps in virus infection, with specific antibodies blocking distinct steps of virus attachment and entry, rather than the perspective that virus neutralization correlates with increased antibody binding to any virion surface site, independent of the epitope recognized by the antibody. Segregation of virus neutralization and sensitivity to low pH to specific regions supports a model of HCV E2 immunogenic domains similar to the antigenic structural and functional domains of other flavivirus envelope E glycoproteins.
Journal of General Virology | 2008
Ania M. Owsianka; Alexander W. Tarr; Zhen-Yong Keck; Ta-Kai Li; Jeroen Witteveldt; Richard Adair; Steven K. H. Foung; Jonathan K. Ball; Arvind H. Patel
The humoral response to hepatitis C virus (HCV) may contribute to controlling infection. We previously isolated human monoclonal antibodies to conformational epitopes on the HCV E2 glycoprotein. Here, we report on their ability to inhibit infection by retroviral pseudoparticles incorporating a panel of full-length E1E2 clones representing the full spectrum of genotypes 1–6. We identified one antibody, CBH-5, that was capable of neutralizing every genotype tested. It also potently inhibited chimeric cell culture-infectious HCV, which had genotype 2b envelope proteins in a genotype 2a (JFH-1) background. Analysis using a panel of alanine-substitution mutants of HCV E2 revealed that the epitope of CBH-5 includes amino acid residues that are required for binding of E2 to CD81, a cellular receptor essential for virus entry. This suggests that CBH-5 inhibits HCV infection by competing directly with CD81 for a binding site on E2.
Journal of Virology | 2007
Zhen-Yong Keck; Jinming Xia; Zhaohui Cai; Ta-Kai Li; Ania M. Owsianka; Arvind H. Patel; Guangxiang Luo; Steven K. H. Foung
ABSTRACT Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.1 to 4 μg/ml. For some neutralizing HMAbs, HCVcc neutralization displayed a linear correlation with an antibody concentration between the IC50 and the IC90 while others showed a nonlinear correlation. The differences between IC50/IC90 ratios and earlier findings that neutralizing HMAbs block E2 interaction with CD81 suggest that these antibodies block different facets of virus-receptor interaction. Collectively, these findings support an immunogenic model of HCV E2 having three immunogenic domains with distinct structures and functions and provide added support for the idea that CD81 is required for virus entry.
Journal of Virology | 2005
Zhen-Yong Keck; Ta-Kai Li; Jinming Xia; Birke Bartosch; François-Loïc Cosset; Jean Dubuisson; Steven K. H. Foung
ABSTRACT Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The isolation and characterization of three new HMAbs within domain A for a total of six provide support for this model. All six domain A HMAbs do not neutralize HCV retroviral pseudotype particle (HCVpp) infection on Huh-7 cells, and all six HMAbs have similar binding affinity and maximum binding, Bmax, a relative indicator of epitope density, as other neutralizing HMAbs, suggesting that neutralization is epitope specific and not by binding to any surface epitope. The dose-dependent neutralizing activity of CBH-7, an HMAb to a domain C epitope in spatial proximity to domain A, and of CBH-5, a domain B HMAb to a more distant epitope, were tested in the presence and absence of each domain A HMAb. No enhancement or reduction in CBH-7 or CBH-5 neutralizing activity was observed, indicating that the potential induction of nonneutralizing antibodies should not be a central issue for HCV vaccine design. To assess whether domain A is involved in the structural changes as part of a pH-dependent virus envelope fusion process, changes in antibody binding patterns to normal pH and acid pH-treated HCVpp were measured. Antibody binding affinity of HMAbs to HCVpp was not affected by low pH. However, the Bmax values for low-pH-treated HCVpp with antibodies to domain A increased 46%, for domain C (CBH-7) they increased 23%, and for domain B (CBH-5) there was a decrease of 12%. Collectively, the organization and function of HCV E2 antigenic domains are roughly analogous to the large envelope glycoprotein E organizational structure for other flaviviruses with three distinct structural and functional domains.
Journal of Virology | 2013
Zhen-Yong Keck; Wenyan Wang; Yong Wang; Patrick Lau; Thomas H. R. Carlsen; Jannick Prentoe; Jinming Xia; Arvind H. Patel; Jens Bukh; Steven K. H. Foung
ABSTRACT A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423. To define the interplay between these antibodies, we isolated human monoclonal antibodies (HMAbs) to aa 412 to 423, designated HC33-related HMAbs (HC33 HMAbs), and characterized their interactions with other HMAbs to aa 434 to 446. A subset of the HC33 HMAbs neutralized genotype 1 to 6 infectious cell culture-derived HCV virions (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33 HMAbs and HMAbs to aa 434 to 446. When HMAbs to aa 434 to 446, which mediated neutralization, were combined with neutralizing HC33 HMAbs, biphasic patterns in neutralization were observed. A modest degree of antagonism was observed at lower concentrations, and a modest degree of synergism was observed at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus neutralization and that the antibodies to aa 412 to 423 and aa 434 to 446 do not hinder their respective virus-neutralizing activities.