Zhenfu Han
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenfu Han.
Science Translational Medicine | 2011
Corinne K. Cusumano; Jerome S. Pinkner; Zhenfu Han; Sarah E. Greene; Bradley Ford; Jan R. Crowley; Jeffrey P. Henderson; James W. Janetka; Scott J. Hultgren
Optimized mannoside compounds that block uropathogenic E. coli entry into bladder epithelium were effective in the treatment and prevention of urinary tract infections in mice. Bypassing Resistance to Treatment of Urinary Tract Infections Sometimes, we can have too much of a good thing. The antibiotics that allow us to survive microbial infections and save untold human lives brought with them the emergence of microbes resistant to these drugs. These resistant pathogens often make trouble in the urinary system, causing recurrent urinary tract infections (UTIs) in women that require long-term antibiotic use and resist treatment. To thwart the evolution of the drug-resistant Escherichia coli that favor the urinary tract, Cusumano et al. have developed a series of mannoside compounds as alternative antimicrobial drugs. Because these agents interfere with the ability of uropathogenic E. coli to bind to bladder epithelial cells through a receptor called FimH, they interrupt the E. coli life cycle, curing infection. Optimization of other features, including oral availability, yields a promising contender for translation into patients. From a panel of mannoside compounds, the authors selected one (termed 6) that inhibited E. coli biofilm production in culture at a relatively low dose and survived passage through the gut, allowing administration in pill form. When they gave it to mice with chronic UTIs, 6 quickly cause a drop in the bacteria in the bladder to a level considerably lower than that produced by the standard antibiotic treatment. And when mice received 6 before exposure to bacteria, they remained healthy, likely because the drug blocked bacterial entry into bladder cells. Compound 6’s ability to keep bacteria out of the epithelial cells of the bladder could also augment the action of the standard antibiotic by ensuring that the microbes stayed in the bladder lumen where they were exposed to maximal doses of antibiotics. In another round of chemical tweaking, the authors further improved compound 6 to increase its binding to FimH, cell permeability, oral bioavailability, and bladder tissue penetration. The result—compound 8—is an excellent lead candidate for the treatment and prevention of recurrent UTI. Safety and efficacy studies in women will test 8’s promise in bypassing the antibiotic resistance that complicates the management of this common infection. Chronic and recurrent urinary tract infections pose a serious medical problem because there are few effective treatment options. Patients with chronic urinary tract infections are commonly treated with long-term prophylactic antibiotics that promote the development of antibiotic-resistant forms of uropathogenic Escherichia coli (UPEC), further complicating treatment. We developed small–molecular weight compounds termed mannosides that specifically inhibit the FimH type 1 pilus lectin of UPEC, which mediates bacterial colonization, invasion, and formation of recalcitrant intracellular bacterial communities in the bladder epithelium. Here, we optimized these compounds for oral bioavailability and demonstrated their fast-acting efficacy in treating chronic urinary tract infections in a preclinical murine model. These compounds also prevented infection in vivo when given prophylactically and strongly potentiated the activity of the current standard of care therapy, trimethoprim-sulfamethoxazole, against clinically resistant PBC-1 UPEC bacteria. These compounds have therapeutic efficacy after oral administration for the treatment of established urinary tract infections in vivo. Their unique mechanism of action—targeting the pilus tip adhesin FimH—circumvents the conventional requirement for drug penetration of the outer membrane, minimizing the potential for the development of resistance. The small–molecular weight compounds described herein promise to provide substantial benefit to women suffering from chronic and recurrent urinary tract infections.
Journal of Medicinal Chemistry | 2010
Zhenfu Han; Jerome S. Pinkner; Bradley Ford; Robert Obermann; William Nolan; Scott A. Wildman; Doug W. Hobbs; Tom Ellenberger; Corinne K. Cusumano; Scott J. Hultgren; James W. Janetka
FimH-mediated cellular adhesion to mannosylated proteins is critical in the ability of uropathogenic E. coli (UPEC) to colonize and invade the bladder epithelium during urinary tract infection. We describe the discovery and optimization of potent small-molecule FimH bacterial adhesion antagonists based on alpha-d-mannose 1-position anomeric glycosides using X-ray structure-guided drug design. Optimized biarylmannosides display low nanomolar binding affinity for FimH in a fluorescence polarization assay and submicromolar cellular activity in a hemagglutination (HA) functional cell assay of bacterial adhesion. X-ray crystallography demonstrates that the biphenyl moiety makes several key interactions with the outer surface of FimH including pi-pi interactions with Tyr-48 and an H-bonding electrostatic interaction with the Arg-98/Glu-50 salt bridge. Dimeric analogues linked through the biaryl ring show an impressive 8-fold increase in potency relative to monomeric matched pairs and represent the most potent FimH antagonists identified to date. The FimH antagonists described herein hold great potential for development as novel therapeutics for the effective treatment of urinary tract infections.
Antimicrobial Agents and Chemotherapy | 2012
Pascale S. Guiton; Corinne K. Cusumano; Kimberly A. Kline; Karen W. Dodson; Zhenfu Han; James W. Janetka; Jeffrey P. Henderson; Michael G. Caparon; Scott J. Hultgren
ABSTRACT Catheter-associated urinary tract infections (CAUTIs) constitute the majority of nosocomial urinary tract infections (UTIs) and pose significant clinical challenges. These infections are polymicrobial in nature and are often associated with multidrug-resistant pathogens, including uropathogenic Escherichia coli (UPEC). Urinary catheterization elicits major histological and immunological alterations in the bladder that can favor microbial colonization and dissemination in the urinary tract. We report that these biological perturbations impact UPEC pathogenesis and that bacterial reservoirs established during a previous UPEC infection, in which bacteriuria had resolved, can serve as a nidus for subsequent urinary catheter colonization. Mannosides, small molecule inhibitors of the type 1 pilus adhesin, FimH, provided significant protection against UPEC CAUTI by preventing bacterial invasion and shifting the UPEC niche primarily to the extracellular milieu and on the foreign body. By doing so, mannosides potentiated the action of trimethoprim-sulfamethoxazole in the prevention and treatment of CAUTI. In this study, we provide novel insights into UPEC pathogenesis in the context of urinary catheterization, and demonstrate the efficacy of novel therapies that target critical mechanisms for this infection. Thus, we establish a proof-of-principle for the development of mannosides to prevent and eventually treat these infections in the face of rising antibiotic-resistant uropathogens.
ACS Medicinal Chemistry Letters | 2014
Zhenfu Han; Peter K. W. Harris; Darin E. Jones; Ryan Chugani; Tommy Kim; Manjula Agarwal; Wei Shen; Scott A. Wildman; James W. Janetka
Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON.
ChemMedChem | 2016
Cassie Jarvis; Zhenfu Han; Vasilios Kalas; Roger D. Klein; Jerome S. Pinkner; Bradley Ford; Jana Binkley; Corinne K. Cusumano; Zachary T. Cusumano; Laurel Mydock-McGrane; Scott J. Hultgren; James W. Janetka
Uropathogenic E. coli (UPEC) employ the mannose‐binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half‐life in vivo. In a rational design strategy, we obtained an X‐ray structure of lead mannosides and then designed mannosides with improved drug‐like properties. We show that cyclizing the carboxamide onto the biphenyl B‐ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2‐methyl‐4‐(1‐oxo‐1,2‐dihydroisoquinolin‐7‐yl)phenyl α‐d‐mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N‐Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria‐mediated hemagglutination and prevent biofilm formation by UPEC with single‐digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date.
Bioorganic & Medicinal Chemistry | 2015
Francisco M. Franco; Darin E. Jones; Peter K. W. Harris; Zhenfu Han; Scott A. Wildman; Cassie Jarvis; James W. Janetka
Hepatocyte growth factor activator (HGFA), matriptase and hepsin are all S1 trypsin-like serine endopeptidases. HGFA is a plasma protease while hepsin and matriptase are type II transmembrane proteases (TTSPs). Upregulated expression and activity of all three proteases is associated with aberrant cancer cell signaling through c-MET and RON tyrosine kinase cell-signaling pathways in cancer. We modeled known benzamidine protease inhibitor scaffolds into the active sites of matriptase, hepsin and HGFA to design new non-peptide inhibitors of hepsin and HGFA. First, we used a docking model of the irreversible inhibitor, Nafamostat, bound to the active site of HGFA in order to explore structure activity relationships (SAR). Compounds were screened for inhibition of HGFA activity in a kinetic enzyme assay using a chromogenic substrate. Next, we designed matched pair compound libraries of 3-amidino and 4-amidino phenylalanine (benzamidine) arginine peptidomimetics based on the structure of matriptase inhibitor, CJ-672. Compounds were screened for inhibition of HGFA, matriptase, and hepsin enzyme activity using fluorogenic substrates. Using this strategy we have discovered the first reported non-peptide small molecule inhibitors of both HGFA and hepsin. These inhibitors have differential potency and selectivity towards all three proteases. A subset of piperazinyl ureas highlighted by 25a, have excellent potency and selectivity for hepsin over matriptase and HGFA.
ChemMedChem | 2016
Zhenfu Han; Peter K. W. Harris; Partha Karmakar; Tommy Kim; Ben Y. Owusu; Scott A. Wildman; Lidija Klampfer; James W. Janetka
Upregulation of the HGF and MSP growth‐factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c‐MET or RON kinase signaling. We rationally designed P1’ α‐ketobenzothiazole mechanism‐based inhibitors of these proteases. Structure–activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1–P1’ substrate cleavage site via a P1’ amide linker off the benzothiazole, occupying the S3’ pocket. Optimized inhibitors display sub‐nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin‐like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)‐mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Oncotarget | 2017
Benjamin Y. Owusu; Shantasia Thomas; Phanindra Venukadasula; Zhenfu Han; James W. Janetka; Robert A. Galemmo; Lidija Klampfer
Targeted therapeutic agents, such as inhibitors of epithelial growth factor receptor (EGFR), have transformed the management of non-small cell lung cancer (NSCLC) patients. MET-amplified NSCLC cells display resistance to EGFR-targeting agents, but are addicted to MET signaling for survival and proliferation and are sensitive to MET inhibition. However, responsive cancer cells invariably develop resistance to MET-targeted treatment.The tumor microenvironment plays a major role in resistance to anticancer therapy. We demonstrated that fibroblasts block the response of MET-amplified NSCLC cells to the MET kinase inhibitor, JNJ38877605 in an HGF-dependent manner. Thus, MET-amplified NSCLC cells become addicted to HGF upon pharmacological inhibition of MET. HGF restored phosphorylation of MET, EGFR and RON, and maintained pro-survival AKT and ERK signaling in MET-inhibited cells.We developed a small molecule inhibitor of pro-HGF activation, SRI31215, which acts as a triplex inhibitor of the pro-HGF activating proteases matriptase, hepsin and HGF activator (HGFA). SRI31215 blocked crosstalk between tumor cells and fibroblasts and overcame fibroblast-mediated resistance to MET inhibition by preventing fibroblast-mediated reactivation of AKT and ERK signaling. Structurally unrelated triplex inhibitors of matriptase, hepsin and HGFA that we developed in parallel showed similar biological activity.Our data suggest that simultaneous inhibition of HGF and MET is required to overcome resistance to MET inhibitors in MET-amplified NSCLC cells. This provides a rationale for the development of novel combination therapeutic strategies for the treatment of NSCLC patients with MET amplification.Targeted therapeutic agents, such as inhibitors of epithelial growth factor receptor (EGFR), have transformed the management of non-small cell lung cancer (NSCLC) patients. MET-amplified NSCLC cells display resistance to EGFR-targeting agents, but are addicted to MET signaling for survival and proliferation and are sensitive to MET inhibition. However, responsive cancer cells invariably develop resistance to MET-targeted treatment. The tumor microenvironment plays a major role in resistance to anticancer therapy. We demonstrated that fibroblasts block the response of MET-amplified NSCLC cells to the MET kinase inhibitor, JNJ38877605 in an HGF-dependent manner. Thus, MET-amplified NSCLC cells become addicted to HGF upon pharmacological inhibition of MET. HGF restored phosphorylation of MET, EGFR and RON, and maintained pro-survival AKT and ERK signaling in MET-inhibited cells. We developed a small molecule inhibitor of pro-HGF activation, SRI31215, which acts as a triplex inhibitor of the pro-HGF activating proteases matriptase, hepsin and HGF activator (HGFA). SRI31215 blocked crosstalk between tumor cells and fibroblasts and overcame fibroblast-mediated resistance to MET inhibition by preventing fibroblast-mediated reactivation of AKT and ERK signaling. Structurally unrelated triplex inhibitors of matriptase, hepsin and HGFA that we developed in parallel showed similar biological activity. Our data suggest that simultaneous inhibition of HGF and MET is required to overcome resistance to MET inhibitors in MET-amplified NSCLC cells. This provides a rationale for the development of novel combination therapeutic strategies for the treatment of NSCLC patients with MET amplification.
Cancer Research | 2014
James W. Janetka; Zhenfu Han; Peter K. W. Harris; Scott A. Wildman
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Hepatocyte Growth Factor Activator (HGFA) is a member of the S1 family of trypsin-like serine proteases. Its biological function is to proteolytically process the inactive single-chain zymogen precursors of the receptor tyrosine kinase ligands HGF (hepatocyte growth factor) and MSP (macrophage stimulating protein) resulting in formation of their active heterodimeric forms which initiate ligand-dependent c-MET and RON kinase cell signaling, respectively. We have discovered the first small molecular weight mechanism-based ketothiazole inhibitors of HGFA. The compounds were evaluated for HGFA, matriptase and hepsin inhibition in a protease competition assay using a chromogenic peptide substrate. We have identified several sub-micromolar inhibitors of HGFA and demonstrate they inhibit conversion of the native pro-HGF and pro-MSP substrates into active heterodimers. Finally, we show that HGFA inhibitors cause a dose-dependent decrease c-MET phosphorylation in invasive MDA-MB-231 breast cancer cells. This investigation provides preliminary validation of HGFA as a novel therapeutic target for breast cancer. These initial peptides serve as templates for lead optimization and the structure-based design of other small-molecule inhibitors. Optimized inhibitors will be used to study the role of HGFA in the regulation of growth factors, kinase receptor activation, cell signaling, invasion, and breast cancer metastasis. Citation Format: James Janetka, Zhenfu Han, Peter Harris, Scott Wildman. Mechanism-based inhibitors of HGFA, matriptase and hepsin for breast cancer treatment. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2523. doi:10.1158/1538-7445.AM2014-2523
Journal of Medicinal Chemistry | 2012
Zhenfu Han; Jerome S. Pinkner; Bradley Ford; Erik Chorell; Jan M. Crowley; Corinne K. Cusumano; Scott Campbell; Jeffrey P. Henderson; Scott J. Hultgren; James W. Janetka