Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zheng-Sheng Wu is active.

Publication


Featured researches published by Zheng-Sheng Wu.


PLOS ONE | 2012

MicroRNA-7 Inhibits Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer Cells via Targeting FAK Expression

Xiangjun Kong; Gaopeng Li; Yan Yuan; Yan He; Xiaoli Wu; Weijie Zhang; Zheng-Sheng Wu; Tingting Chen; Wen-Yong Wu; Peter E. Lobie; Tao Zhu

Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression.


Endocrinology | 2008

Autocrine Human Growth Hormone Stimulates Oncogenicity of Endometrial Carcinoma Cells

Vijay Pandey; Jo K. Perry; Kumarasamypet M. Mohankumar; Xiangjun Kong; Shumin Liu; Zheng-Sheng Wu; Murray D. Mitchell; Tao Zhu; Peter E. Lobie

Recent published data have demonstrated elevated levels of human GH (hGH) in endometriosis and endometrial adenocarcinoma. Herein, we demonstrate that autocrine production of hGH can enhance the in vitro and in vivo oncogenic potential of endometrial carcinoma cells. Forced expression of hGH in endometrial carcinoma cell lines RL95-2 and AN3 resulted in an increased total cell number through enhanced cell cycle progression and decreased apoptotic cell death. In addition, autocrine hGH expression in endometrial carcinoma cells promoted anchorage-independent growth and increased cell migration/invasion in vitro. In a xenograft model of human endometrial carcinoma, autocrine hGH enhanced tumor size and progression. Changes in endometrial carcinoma cell gene expression stimulated by autocrine hGH was consistent with the altered in vitro and in vivo behavior. Functional antagonism of hGH in wild-type RL95-2 cells significantly reduced cell proliferation, cell survival, and anchorage-independent cell growth. These studies demonstrate a functional role for autocrine hGH in the development and progression of endometrial carcinoma and indicate potential therapeutic relevance of hGH antagonism in the treatment of endometrial carcinoma.


Endocrinology | 2010

Artemin Stimulates Oncogenicity and Invasiveness of Human Endometrial Carcinoma Cells

Vijay Pandey; Pengxu Qian; Jian Kang; Jo K. Perry; Murray D. Mitchell; Zhinan Yin; Zheng-Sheng Wu; Dong-Xu Liu; Tao Zhu; Peter E. Lobie

Here, we provide evidence for a functional role of artemin (ARTN) in progression of endometrial carcinoma (EC). Increased ARTN protein expression was observed in EC compared with normal endometrial tissue, and ARTN protein expression in EC was significantly associated with higher tumor grade and invasiveness. Forced expression of ARTN in EC cells significantly increased total cell number as a result of enhanced cell cycle progression and cell survival. In addition, forced expression of ARTN significantly enhanced anchorage-independent growth and invasiveness of EC cells. Moreover, forced expression of ARTN increased tumor size in xenograft models and produced highly proliferative, poorly differentiated, and invasive tumors. The ARTN-stimulated increases in oncogenicity and invasion were mediated by increased expression and activity of AKT1. Small interfering RNA-mediated depletion or antibody inhibition of ARTN significantly reduced oncogenicity and invasion of EC cells. Thus, inhibition of ARTN may be considered as a potential therapeutic strategy to retard progression of EC.


BMC Cancer | 2011

STAT3 activation in monocytes accelerates liver cancer progression

Wen-Yong Wu; Jun Li; Zheng-Sheng Wu; Chang-Le Zhang; Xiang-Ling Meng

BackgroundSignal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood.MethodsImmunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver.ResultsPhosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC.ConclusionOur data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor infiltrating inflammatory cells may an attractive target for liver cancer therapy.


Journal of Clinical Investigation | 2014

DEAD-box helicase DP103 defines metastatic potential of human breast cancers

Eun Myoung Shin; Hui Sin Hay; Moon Hee Lee; Jen Nee Goh; Tuan Zea Tan; Yin Ping Sen; See Wee Lim; Einas M. Yousef; Hooi Tin Ong; Aye Aye Thike; Xiangjun Kong; Zheng-Sheng Wu; Earnest Mendoz; Wei Sun; Manuel Salto-Tellez; Chwee Teck Lim; Peter E. Lobie; Yoon Pin Lim; Celestial T. Yap; Qi Zeng; Gautam Sethi; Martin B. Lee; Patrick Tan; Boon Cher Goh; Lance D. Miller; Jean Paul Thiery; Tao Zhu; Louis Gaboury; Puay Hoon Tan; Kam M. Hui

Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β-activated kinase-1 (TAK1) phosphorylation of NF-κB-activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB-mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.


Current Opinion in Endocrinology, Diabetes and Obesity | 2013

Growth hormone and cancer: an update on progress.

Jo K. Perry; Dong-Xu Liu; Zheng-Sheng Wu; Tao Zhu; Peter E. Lobie

Purpose of review Animals born with a deficiency in the cell surface receptor for growth hormone (GH) have a significantly reduced risk of developing cancer. Conversely, increased expression levels of GH and the GH receptor (GHR) are detectable in a variety of different human cancers. Here we discuss recent literature contributing to our understanding of the field. Recent findings In addition to animal evidence, studies of individuals with Laron syndrome suggest that congenital GHR deficiency may also protect humans against cancer. GH expression in certain malignancies is correlated with clinicohistopathological parameters and may contribute the therapeutic resistance. Other recent studies have identified novel aspects of the GH signal transduction pathway, including receptor crosstalk and the involvement of microRNA in endocrine regulation of GH. Summary Substantial evidence suggests the GH/insulin-like growth factor-1 axis initiates and promotes progression of cancer. However, important questions remain unanswered regarding the therapeutic utility of GH or GHR antagonism in cancer. Further clinical studies regarding the clinical association of GH expression with human malignancies and translational studies investigating GHR antagonism in animal models of human cancer are critical.


Breast Cancer Research | 2011

ARTEMIN synergizes with TWIST1 to promote metastasis and poor survival outcome in patients with ER negative mammary carcinoma

Arindam Banerjee; Zheng-Sheng Wu; Pengxu Qian; Jian Kang; Vijay Pandey; Dong-Xu Liu; Tao Zhu; Peter E. Lobie

IntroductionARTEMIN (ARTN) is an estrogen regulated growth factor, the expression of which promotes resistance to antiestrogen therapies and predicts poorer survival outcome of patients with estrogen receptor (ER) positive mammary carcinoma (ER+MC) treated with tamoxifen. ARTN is also expressed in ER negative mammary carcinoma (ER-MC). Herein, we determined the role of ARTN in ER-MC and defined the mechanism of action producing poor patient prognosis.MethodsWe modulated the expression of ARTN in two ER- (mesenchymal/claudin-low) mammary carcinoma cell lines (BT549 and MDA-MB-231) by forced expression or small interfering RNA (siRNA) mediated depletion. The effects of modulation of ARTN expression were examined by various in vitro measures of oncogenicity, including the expression of TWIST1 messenger RNA (mRNA) and protein. In vitro results were correlated to xenograft studies in immunodeficient mice. Co-expression of ARTN and TWIST1 and their association to poor survival outcome were examined in a cohort of patients with ER-MC. Pathway analysis was performed by pharmacological inhibition of phosphorylation of AKT (pAKT-Ser 473) or modulation of TWIST1 expression.ResultsARTN expression resulted in ER-MC cells with enhanced mesenchymal characteristics, including increased invasion and a gene expression profile consistent with enhanced mesenchymal phenotype. ARTN stimulated ER-MC cell anchorage independent and 3D matrigel growth, endothelial cell adhesion and transmigration of ER-MC cells through an endothelial cell barrier. Forced expression of ARTN produced a larger, locally invasive tumour mass with tumour emboli that produced distant metastasis. ARTN regulated TWIST1 expression in ER-MC cells and ARTN expression was significantly correlated to TWIST1 expression in a panel of mammary carcinoma cell lines and in a cohort of patients with ER-MC. Low expression of both ARTN and TWIST1 predicted 100% relapse free and overall survival in patients with ER-MC, whereas high expression of both ARTN and TWIST1 was associated with a poor survival outcome. ARTN stimulated an increase in TWIST1 expression via increased AKT activity. siRNA mediated depletion of TWIST1 abrogated ARTN stimulated cellular behaviour associated with metastasis, and forced expression of TWIST1 abrogated the functional effects of ARTN depletion.ConclusionsARTN and TWIST1 synergize to produce a worse outcome in ER-MC and combined inhibition of ARTN and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) may therefore provide a novel therapeutic strategy in this subtype of mammary carcinoma.


Molecular Cancer Therapeutics | 2010

Artemin-stimulated progression of human non-small cell lung carcinoma is mediated by BCL2

Jian-Zhong Tang; Xiangjun Kong; Jian Kang; Graeme C. Fielder; Michael Steiner; Jo K. Perry; Zheng-Sheng Wu; Zhinan Yin; Tao Zhu; Dong-Xu Liu; Peter E. Lobie

We herein show that Artemin (ARTN), one of the glial cell line–derived neurotrophic factor family of ligands, promotes progression of human non–small cell lung carcinoma (NSCLC). Oncomine data indicate that expression of components of the ARTN signaling pathway (ARTN, GFRA3, and RET) is increased in neoplastic compared with normal lung tissues; increased expression of ARTN in NSCLC also predicted metastasis to lymph nodes and a higher grade in certain NSCLC subtypes. Forced expression of ARTN stimulated survival, anchorage-independent, and three-dimensional Matrigel growth of NSCLC cell lines. ARTN increased BCL2 expression by transcriptional upregulation, and inhibition of BCL2 abrogated the oncogenic properties of ARTN in NSCLC cells. Forced expression of ARTN also enhanced migration and invasion of NSCLC cells. Forced expression of ARTN in H1299 cells additionally resulted in larger xenograft tumors, which were highly proliferative, invasive, and metastatic. Concordantly, either small interfering RNA–mediated depletion or functional inhibition of endogenous ARTN with antibodies reduced oncogenicity and invasiveness of NSCLC cells. ARTN therefore mediates progression of NSCLC and may be a potential therapeutic target for NSCLC. Mol Cancer Ther; 9(6); 1697–708. ©2010 AACR.


Journal of Biological Chemistry | 2012

Artemin Stimulates Radio- and Chemo-resistance by Promoting TWIST1-BCL-2-dependent Cancer Stem Cell-like Behavior in Mammary Carcinoma Cells

Arindam Banerjee; Pengxu Qian; Zheng-Sheng Wu; Xiaoge Ren; Michael Steiner; Nicola M. Bougen; Suling Liu; Dong-Xu Liu; Tao Zhu; Peter E. Lobie

Background: Artemin is an oncogenic and metastatic factor in mammary carcinoma. Results: Artemin promotes radio- and chemo-resistance by enhancing TWIST1-BCL-2-dependent cancer stem cell like behavior in mammary carcinoma cells. Conclusion: Artemin functions as a cancer stem cell (CSC) factor in mammary carcinoma cells. Significance: Functional inhibition of ARTN may be useful to inhibit CSC activity in mammary carcinoma. Artemin (ARTN) has been reported to promote a TWIST1-dependent epithelial to mesenchymal transition of estrogen receptor negative mammary carcinoma (ER-MC) cells associated with metastasis and poor survival outcome. We therefore examined a potential role of ARTN in the promotion of the cancer stem cell (CSC)-like phenotype in mammary carcinoma cells. Acquired resistance of ER-MC cells to either ionizing radiation (IR) or paclitaxel was accompanied by increased ARTN expression. Small interfering RNA (siRNA)-mediated depletion of ARTN in either IR- or paclitaxel-resistant ER-MC cells restored cell sensitivity to IR or paclitaxel. Expression of ARTN was enriched in ER-MC cells grown in mammospheric compared with monolayer culture and was also enriched along with BMI1, TWIST1, and DVL1 in mammospheric and ALDH1+ populations. ARTN promoted mammospheric growth and self-renewal of ER-MC cells and increased the ALDH1+ population, whereas siRNA-mediated depletion of ARTN diminished these CSC-like cell behaviors. Furthermore, increased ARTN expression was significantly correlated with ALDH1 expression in a cohort of ER-MC patients. Forced expression of ARTN also dramatically enhanced tumor initiating capacity of ER-MC cells in xenograft models at low inoculum. ARTN promotion of the CSC-like cell phenotype was mediated by TWIST1 regulation of BCL-2 expression. ARTN also enhanced mammosphere formation and the ALDH1+ population in estrogen receptor-positive mammary carcinoma (ER+MC) cells. Increased expression of ARTN and the functional consequences thereof may be one common adaptive mechanism used by mammary carcinoma cells to promote cell survival and renewal in hostile tumor microenvironments.


Breast Cancer Research | 2014

Trefoil factor 3 promotes metastatic seeding and predicts poor survival outcome of patients with mammary carcinoma

Vijay Pandey; Zheng-Sheng Wu; Min Zhang; Rui Li; Jian Zhang; Tao Zhu; Peter E. Lobie

IntroductionRecurrence or early metastasis remains the predominant cause of mortality in patients with estrogen receptor positive (ER+) mammary carcinoma (MC). However, the molecular mechanisms underlying the initial progression of ER+ MC to metastasis remains poorly understood. Trefoil factor 3 (TFF3) is an estrogen-responsive oncogene in MC. Herein, we provide evidence for a functional role of TFF3 in metastatic progression of ER+ MC.MethodsThe association of TFF3 expression with clinicopathological parameters and survival outcome in a cohort of MC patients was assessed by immunohistochemistry. The expression of TFF3 in MCF7 and T47D cells was modulated by forced expression or siRNA-mediated depletion of TFF3. mRNA and protein levels were determined using qPCR and western blot. The functional effect of modulation of TFF3 expression in MC cells was determined in vitro and in vivo. Mechanistic analyses were performed using reporter constructs, modulation of signal transducer and activator of transcription 3 (STAT3) expression, and pharmacological inhibitors against c-SRC and STAT3 activity.ResultsTFF3 protein expression was positively associated with larger tumour size, lymph node metastasis, higher stage, and poor survival outcome. Forced expression of TFF3 in ER+ MC cells stimulated colony scattering, cell adhesion to a Collagen I-coated matrix, colony formation on a Collagen I- or Matrigel-coated matrix, endothelial cell adhesion, and transmigration through an endothelial cell barrier. In vivo, forced expression of TFF3 in MCF7 cells stimulated the formation of metastatic nodules in animal lungs. TFF3 regulation of the mRNA levels of epithelial, mesenchymal, and metastatic-related genes in ER+ MC cells were consistent with the altered cell behaviour. Forced expression of TFF3 in ER+ MC cells stimulated phosphorylation of c-SRC that subsequently increased STAT3 activity, which lead to the downregulation of E-cadherin. siRNA-mediated depletion of TFF3 reduced the invasiveness of ER+ MC cells.ConclusionsTFF3 expression predicts metastasis and poor survival outcome of patients with MC and functionally stimulates cellular invasion and metastasis of ER+ MC cells. Adjuvant functional inhibition of TFF3 may therefore be considered to ameliorate outcome of ER+ MC patients.

Collaboration


Dive into the Zheng-Sheng Wu's collaboration.

Top Co-Authors

Avatar

Peter E. Lobie

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tao Zhu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Pengxu Qian

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Vijay Pandey

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Dong-Xu Liu

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

Wen-Yong Wu

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiangjun Kong

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jo K. Perry

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

Keshuo Ding

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xiao-Nan Wang

Anhui Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge