Zheng-Wang Qu
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zheng-Wang Qu.
Chemistry: A European Journal | 2015
Manuel Pérez; Zheng-Wang Qu; Christopher B. Caputo; Vitali Podgorny; Lindsay J. Hounjet; Andreas Hansen; Roman Dobrovetsky; Stefan Grimme; Douglas W. Stephan
The electrophilic phosphonium salt, [(C6 F5 )3 PF][B(C6 F5 )4 ], catalyses the efficient hydrosilylation of ketones, imines and nitriles at room temperature. In the presence of this catalyst, adding one equivalent of hydrosilane to a nitrile yields a silylimine product, whereas adding a second equivalent produces the corresponding disilylamine. [(C6 F5 )3 PCl][B(C6 F5 )4 ] and [(C6 F5 )3 PBr][B(C6 F5 )4 ] are also synthesised and tested as catalysts. Competition experiments demonstrate that the reaction exhibits selectivity for the following functional groups in order of preference: ketone>nitrile>imine>olefin. Computational studies reveal the reaction mechanism to involve initial activation of the Si-H bond by its interaction with the phosphonium centre. The activated complex then acts cooperatively on the unsaturated substrate.
Angewandte Chemie | 2015
Meera Mehta; Michael H. Holthausen; Ian Mallov; Manuel Pérez; Zheng-Wang Qu; Stefan Grimme; Douglas W. Stephan
Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods.
Journal of the American Chemical Society | 2014
Jose Clayston Melo Pereira; Muhammad Sajid; Gerald Kehr; Ashley M. Wright; Birgitta Schirmer; Zheng-Wang Qu; Stefan Grimme; Gerhard Erker; Peter C. Ford
Described is a kinetics and computational study of the reaction of NO with the intramolecular bridged P/B frustrated Lewis pair (FLP) endo-2-(dimesitylphosphino)-exo-3-bis(pentafluorophenyl)boryl-norbornane to give a persistent FLP-NO aminoxyl radical. This reaction follows a second-order rate law, first-order in [FLP] and first-order in [NO], and is markedly faster in toluene than in dichloromethane. By contrast, the NO oxidation of the phosphine base 2-(dimesitylphosphino)norbornene to the corresponding phosphine oxide follows a third-order rate law, first-order in [phosphine] and second-order in [NO]. Formation of the FLP-NO radical in toluene occurs with a ΔH(‡) of 13 kcal mol(-1), a feature that conflicts with the computation-based conclusion that NO addition to a properly oriented B/P pair should be nearly barrierless. Since the calculations show the B/P pair in the most stable solution structure of this FLP to have an unfavorable orientation for concerted reaction, the observed barrier is rationalized in terms of the reversible formation of a [B]-NO complex intermediate followed by a slower isomerization-ring closure step to the cyclic aminoxyl radical. This combined kinetics/theoretical study for the first time provides insight into mechanistic details for the activation of a diatomic molecule by a prototypical FLP.
Angewandte Chemie | 2015
Indranil Chatterjee; Zheng-Wang Qu; Stefan Grimme; Martin Oestreich
A transition-metal-free transfer hydrogenation of 1,1-disubstituted alkenes with cyclohexa-1,4-dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6 F5 )3 -mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6 F5 )3 ](-) . A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa-1,4-diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations.
Angewandte Chemie | 2016
Sergej Tamke; Zheng-Wang Qu; Nikolai A. Sitte; Ulrich Flörke; Stefan Grimme; Jan Paradies
The first frustrated Lewis pair-catalyzed cycloisomerization of a series of 1,5-enynes was developed. The reaction proceeds via the π-activation of the alkyne and subsequent 5-endo-dig cyclization with the adjacent alkene. The presence of PPh3 was of utmost importance on the one hand to prevent side reactions (for example, 1,1-carboboration) and on the other hand for the efficient protodeborylation to achieve the catalytic turnover. The mechanism is explained on the basis of quantum-chemical calculations, which are in full agreement with the experimental observations.
Angewandte Chemie | 2016
Alexander F. G. Maier; Sebastian Tussing; Tobias Schneider; Ulrich Flörke; Zheng-Wang Qu; Stefan Grimme; Jan Paradies
An acceptorless dehydrogenation of heterocycles catalyzed by frustrated Lewis pairs (FLPs) was developed. Oxidation with concomitant liberation of molecular hydrogen proceeded in high to excellent yields for N-protected indolines as well as four other substrate classes. The mechanism of this unprecedented FLP-catalyzed reaction was investigated by mechanistic studies, characterization of reaction intermediates by NMR spectroscopy and X-ray crystal analysis, and by quantum-mechanical calculations. Hydrogen liberation from the ammonium hydridoborate intermediate is the rate-determining step of the oxidation. The addition of a weaker Lewis acid as a hydride shuttle increased the reaction rate by a factor of 2.28 through a second catalytic cycle.
Chemistry: A European Journal | 2016
Alice Lefranc; Zheng-Wang Qu; Stefan Grimme; Martin Oestreich
Hydrogenation and transfer hydrogenation of imines with cyclohexa-1,4-dienes, as well as with a representative Hantzsch ester dihydrogen surrogate, are reported. Both processes are catalyzed by tethered Ru-S complexes but differ in the activation mode of the dihydrogen source: cooperative activation of the H-H bond at the Ru-S bond leads to the corresponding Ru-H complex and protonation of the sulfur atom, whereas the same cationic Ru-S catalyst abstracts a hydride from a donor-substituted cyclohexa-1,4-diene to form the neutral Ru-H complex and a low-energy Wheland intermediate. A sequence of proton and hydride transfers on the imine substrate then yields an amine. The reaction pathways are analyzed computationally, and the established mechanistic pictures are in agreement with the experimental observations.
Chemistry: A European Journal | 2015
Werner Uhl; Jens Tannert; Christian Honacker; Marcus Layh; Zheng-Wang Qu; Tobias Risthaus; Stefan Grimme
Hydrometallation of iPr2 N-Ge(CMe3 )(C≡C-CMe3 )2 with H-M(CMe3 )2 (M=Al, Ga) affords alkenyl-alkynylgermanes in which the Lewis-acidic metal atoms are not coordinated by the amino N atoms but by the α-C atoms of the ethynyl groups. These interactions result in a lengthening of the Ge-C bonds by approximately 10 pm and a comparably strong deviation of the Ge-CC angle from linearity (154.3(1)°). This unusual behaviour may be caused by steric shielding of the N atoms. Coordination of the metal atoms by the amino groups is observed upon hydrometallation of Et2 N-Ge(C6 H5 )(C≡C-CMe3 )2 , bearing a smaller NR2 group. Strong M-N interactions lead to a lengthening of the Ge-N bonds by 10 to 15 pm and a strong deviation of the M atoms from the MC3 plane by 52 and 47 pm, for Al and Ga, respectively. Dual hydrometallation is achieved only with HAl(CMe3 )2 . In the product, there is a strong Al-N bond with converging Al-N and Ge-N distances (208 vs. 200 pm) and an interaction of the second Al atom to the phenyl group. Addition of chloride anions terminates the latter interaction while the activated Ge-N bond undergoes an unprecedented elimination of EtN=C(H)Me at room temperature, leading to a germane with a Ge-H bond. State-of-the-art DFT calculations reveal that the unique mechanism comprises the transfer of the amino group from Ge to Al to yield an intermediate germyl cation as a strong Lewis acid, which induces β-hydride elimination, with chloride binding being crucial for providing the thermodynamic driving force.
Angewandte Chemie | 2017
Yong‐Qiang Zhang; Elisabeth Vogelsang; Zheng-Wang Qu; Stefan Grimme; Andreas Gansäuer
Aziridines activated by N-acylation are opened to the higher substituted radical through electron transfer from titanocene(III) complexes in a novel catalytic reaction. This reaction is applicable in conjugate additions, reductions, and cyclizations and suited for the construction of quaternary carbon centers. The concerted mechanism of the ring opening is indicated by DFT calculations.
Chemistry: A European Journal | 2016
Tobias Heurich; Zheng-Wang Qu; Senada Nožinović; Gregor Schnakenburg; Hideto Matsuoka; Stefan Grimme; Olav Schiemann; Rainer Streubel
Low-temperature generation of P-nitroxyl phosphane 2 (Ph2 POTEMP), which was obtained by the reaction of Ph2 PH (1) with two equivalents of TEMPO, is presented. Upon warming, phosphane 2 decomposed to give P-nitroxyl phosphane P-oxide 3 (Ph2 P(O)OTEMP) as one of the final products. This facile synthetic protocol also enabled access to P-sulfide and P-borane derivatives 7 and 13, respectively, by using Ph2 P(S)H (6) or Ph2 P(BH3 )H (11) and TEMPO. Phosphane sulfide 7 revealed a rearrangement to phosphane oxide 8 (Ph2 P(O)STEMP) in CDCl3 at ambient temperature, whereas in THF, thermal decomposition of sulfide 7 yielded salt 10 ([TEMP-H2 ][Ph2 P(S)O]). As well as EPR and detailed NMR kinetic studies, indepth theoretical studies provided an insight into the reaction pathways and spin-density distributions of the reactive intermediates.