Zheng Wanguo
China Academy of Engineering Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zheng Wanguo.
Optics Express | 2013
Liu Hongjie; Huang Jin; Wang Fengrui; Zhou Xinda; Ye Xin; Zhou Xiaoyan; Sun Laixi; Jiang Xiaodong; Sui Zhan; Zheng Wanguo
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Chinese Physics B | 2012
Jiang Yong; Xiang Xia; Liu Chun-Ming; Luo Cheng-Si; Wang Hai-Jun; Yuan Xiao-Dong; He Shao-Bo; Ren Wei; Lü Hai-Bing; Zheng Wanguo; Zu Xiao-Tao
Two methods: high-power, short-time, single-shot irradiation (Method A) and low-power, long-time, multi-shot irradiation (Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser. To verify the mitigation effect of the two methods, the laser induced damage thresholds (LIDTs) of the mitigated sites are tested with a 355-nm, 6.4-ns Nd:YAG laser, and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser. The mitigated damaged sites treated with the two methods have almost the same LIDTs, which can recover to the level of pristine material. Compared with Method A, Method B produces mitigated sites with low crater depth and weak light modulation. In addition, there is no raised rim or re-deposited debris formed around the crater edge for Method B. Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater. It is indicated that the calculated results are consistent with the experimental results.
Chinese Physics Letters | 2009
Huang Wanqing; Han Wei; Wang Fang; Xiang Yong; Li Fuquan; Feng Bin; Jing Feng; Wei Xiaofeng; Zheng Wanguo; Zhang Xiao-Min
Laser-induced damage is a key lifetime limiter for optics in high-power laser facility. Damage initiation and growth under 351 nm high-fluence laser irradiation are observed on larger-aperture fused silica optics. The input surface of one fused silica component is damaged most severely and an explanation is presented. Obscurations and the area of a scratch on it are found to grow exponentially with the shot number. The area of damage site grows linearly. Micrographs of damage sites support the micro-explosion damage model which could be used to qualitatively explain the phenomena.
Chinese Physics Letters | 2012
Liu Chun-Ming; Jiang Yong; Luo Cheng-Si; Shi Xiao-Yan; Ren Wei; Xiang Xia; Wang Hai-Jun; He Shao-Bo; Yuan Xiao-Dong; Lyu Haibing; Zheng Wanguo; Zu Xiao-Tao
The structure evolution of fused silica induced by CO2 laser irradiation (with a wavelength of 10.6 μm) is studied in detail. In the non-evaporation mitigation process, the irradiation time should be long enough to completely eliminate damage. However, there is a raised rim around the mitigated site. The rim height is enhanced when the irradiation time increases, and the mitigated site can lead to off-axis and on-axis downstream light intensification. Volume shrinkage occurs during the irradiation and rapid cooling processes, and this may be due to a decrease in the Si—O—Si bond angle. The distribution of debris overlaps with the maximum phase retardance induced by stress. The debris arouses an enhanced light absorption in the region from 220 nm to 800 nm.
Chinese Physics B | 2012
Li Li; Xiang Xia; Zu Xiao-Tao; Yuan Xiao-Dong; He Shao-Bo; Jiang Xiaodong; Zheng Wanguo
Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims. Specifically, we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail.
Chinese Physics B | 2012
Jiang Yong; Liu Chun-Ming; Luo Cheng-Si; Yuan Xiao-Dong; Xiang Xia; Wang Hai-Jun; He Shao-Bo; Lü Hai-Bing; Ren Wei; Zheng Wanguo; Zu Xiao-Tao
A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm. The influence of the pulse frequency of a CO2 laser on the mitigation effect is studied. It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz. Furthermore, the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency, leading to less degradation of the wave-front quality of the conditioned sample. The energy density of the CO2 laser beam is introduced for selecting the mitigation parameters. The damage sites can be successfully mitigated by increasing the energy density in a ramped way. Finally, the laser-induced damage threshold (LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot (0.23 mm2) and a large spot (3.14 mm2), separately. It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.
Chinese Physics B | 2012
Yu Jing-Xia; He Shao-Bo; Xiang Xia; Yuan Xiao-Dong; Zheng Wanguo; Lü Hai-Bing; Zu Xiao-Tao
High temperature annealing is often used for the stress control of optical materials. However, weight and viscosity at high temperature may destroy the surface morphology, especially for the large-scale, thin and heavy optics used for large laser facilities. It is necessary to understand the thermal behaviour and design proper support systems for large-scale optics at high temperature. In this work, three support systems for fused silica optics are designed and simulated with the finite element method. After the analysis of the thermal behaviours of different support systems, some advantages and disadvantages can be revealed. The results show that the support with the optical surface vertical is optimal because both pollution and deformation of optics could be well controlled during annealing at high temperature. Annealing process of the optics irradiated by CO2 laser is also simulated. It can be concluded that high temperature annealing can effectively reduce the residual stress. However, the effects of annealing on surface morphology of the optics are complex. Annealing creep is closely related to the residual stress and strain distribution. In the region with large residual stress, the creep is too large and probably increases the deformation gradient which may affect the laser beam propagation.
Chinese Physics Letters | 2011
Wang Fengrui; Liu Hongjie; Huang Jin; Zhou Xinda; Jiang Xiaodong; Wu Wei-Dong; Zheng Wanguo; Ju Xin
Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement factor as functions of diameter and refractive index of inclusions are investigated, more than 10 times that of incident beam is obtained in the simulation. We model the etched crack in close proximity to a real structure, which is characterized by AFM. We find that the peak light intensity of the crack is a function of its cross sectional breadth depth ratio, providing good hints for the effective processing of fused silica samples to improve the damage threshold.
Chinese Physics B | 2013
He Shao-Bo; Wang Shifa; Ding Qingping; Yuan Xiao-Dong; Zheng Wanguo; Xiang Xia; Li Zhijie; Zu Xiao-Tao
A modified Polyacrylamide gel route is applied to synthesize SnO2 nanoparticles. High-quality SnO2 nanoparticles with a uniform size are prepared using different chelating agents. The average particle size of the samples is found to depend on the choice of the chelating agent. The photoluminescence spectrum detected at λex = 230 nm shows a new peak located at 740 nm due to the surface defect level distributed at the nanoparticle boundaries.
Chinese Physics Letters | 2010
Han Wei; Huang Wanqing; Li Keyu; Wang Fang; Feng Bin; Jia Huai-Ting; Li Fuquan; Xiang Yong; Jing Feng; Zheng Wanguo
Laser induced damage experiment is carried out on a large aperture laser facility. Severe damage is observed on a large-aperture fused silica grating which presents dense craters on the front surface and six cracks alternatively located at the front and the rear surface. The bizarre fact about the damage on the grating is that, unlike other optics, the damage craters are almost on the front surface. According to observation, damage phenomenon is due to the stimulated Brillouin scattering (SBS) effect occurring in the grating, which includes the transverse SBS, the back SBS and the zigzag SBS.