Zheng-Xing Wu
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zheng-Xing Wu.
Current Biology | 2005
David R. Stevens; Zheng-Xing Wu; Ulf Matti; Harald J. Junge; Claudia Schirra; Ute Becherer; Sonja M. Wojcik; Nils Brose; Jens Rettig
Most nerve cells communicate with each other through synaptic transmission at chemical synapses. The regulated exocytosis of neurotransmitters, hormones, and peptides occurs at specialized membrane areas through Ca2+-triggered fusion of secretory vesicles with the plasma membrane . Prior to fusion, vesicles are docked at the plasma membrane and must then be rendered fusion-competent through a process called priming. The molecular mechanism underlying this priming process is most likely the formation of the SNARE complex consisting of Syntaxin 1, SNAP-25, and Synaptobrevin 2. Members of the Munc13 protein family consisting of Munc13-1, -2, -3, and -4 were found to be absolutely required for this priming process . In the present study, we identified the minimal Munc13-1 domain that is responsible for its priming activity. Using Munc13-1 deletion constructs in an electrophysiological gain-of-function assay of chromaffin-granule secretion, we show that priming activity is mediated by the C-terminal residues 1100-1735 of Munc13-1, which contains both Munc13-homology domains and the C-terminal C2 domain. Priming by Munc13-1 appears to require its interaction with Syntaxin 1 because point mutants that do not bind Syntaxin 1 do not prime chromaffin granules.
Nature Communications | 2012
Huijie Liu; Xueren Wang; Horng-Dar Wang; Jinjing Wu; Jing Ren; Lingfeng Meng; Qingfa Wu; Hansheng Dong; Jing Wu; Tzu-Yu Kao; Qian Ge; Zheng-Xing Wu; Chiou-Hwa Yuh; Ge Shan
Food and other environmental factors affect gene expression and behaviour of animals. Differences in bacterial food affect the behaviour and longevity of Caenorhabditis elegans. However, no research has been carried out to investigate whether bacteria could utilize endogenous RNAs to affect C. elegans physiology. Here we show that two Escherichia coli endogenous noncoding RNAs, OxyS and DsrA, impact on the physiology of C. elegans. OxyS downregulates che-2, leading to impairment in C. elegans chemosensory behaviour and DsrA suppresses diacylglycerol lipase gene F42G9.6, leading to a decrease in longevity. We also examine some genes in the C. elegans RNA interference pathway for their possible involvement in the effects of OxyS and DsrA. Other bacteria, such as Bacillus mycoides, may also utilize its noncoding RNAs to interfere with gene expression in C. elegans. Our results demonstrate that E. coli noncoding RNAs can regulate gene expression and physiological conditions of C. elegans and indicate that noncoding RNAs might have interspecies ecological roles.
Neuron | 2007
Ke-Ming Zhou; Yongming Dong; Qian Ge; Dan Zhu; Wei Zhou; Xian-Guang Lin; Tao Liang; Zheng-Xing Wu; Tao Xu
The nematode C. elegans provides a powerful model system for exploring the molecular basis of synaptogenesis and neurotransmission. However, the lack of direct functional assays of release processes has largely prevented an in depth understanding of the mechanism of vesicular exocytosis and endocytosis in C. elegans. We address this technical limitation by developing direct electrophysiological assays, including membrane capacitance and amperometry measurements, in primary cultured C. elegans neurons. In addition, we have succeeded in monitoring the docking and fusion of single dense core vesicles (DCVs) employing total internal reflection fluorescence microscopy. With these approaches and mutant perturbation analysis, we provide direct evidence that UNC-31 is required for the docking of DCVs at the plasma membrane. Interestingly, the defect in DCV docking caused by UNC-31 mutation can be fully rescued by PKA activation. We also demonstrate that UNC-31 is required for UNC-13-mediated augmentation of DCV exocytosis.
Nature Communications | 2012
Zhaoyu Li; Yidong Li; Yalan Yi; Wenming Huang; Song Yang; Wei-Pin Niu; Li Zhang; Zijing Xu; Anlian Qu; Zheng-Xing Wu; Tao Xu
Feeding behaviour is modulated by both environmental cues and internal physiological states. Appetite is commonly boosted by the pleasant smell (or appearance) of food and destroyed by a bad taste. In reality, animals sense multiple environmental cues at the same time and it is not clear how these sensory inputs are integrated and a decision is made to regulate feeding behaviour accordingly. Here we show that feeding behaviour in Caenorhabditis elegans can be either facilitated by attractive odours or suppressed by repellents. By identifying mutants that are defective for sensory-mediated feeding regulation, we dissected a central flip-flop circuit that integrates two contradictory sensory inputs and generates bistable hormone output to regulate feeding behaviour. As feeding regulation is fundamental to animal survival, we speculate that the basic organizational logic identified here in C. elegans is likely convergent throughout different phyla.
Traffic | 2006
Li Xie; Ming Zhang; Wei Zhou; Zheng-Xing Wu; Jiuping Ding; Liangyi Chen; Tao Xu
Three different methods, membrane capacitance (Cm) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic β cells. We found that extracellular application of ATP mobilized intracellular Ca2+ stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca2+ elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca2+ releasing sites. ATP‐induced Ca2+ transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP3 receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP3‐sensitive acidic Ca2+ stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca2+ stores through IP3 receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co‐released with insulin.
Nature Communications | 2015
Min Guo; Tai-Hong Wu; Yan-Xue Song; Ming-Hai Ge; Chun-Ming Su; Wei-Pin Niu; Lan-Lan Li; Zijing Xu; Chang-Li Ge; Maha T. H. Al-Mhanawi; Shi-Ping Wu; Zheng-Xing Wu
Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.
Biochemical and Biophysical Research Communications | 2010
Xian-Guang Lin; Min Ming; Mao-Rong Chen; Wei-Pin Niu; Yong-Deng Zhang; Bei Liu; Yaming Jiu; Jun-Wei Yu; Tao Xu; Zheng-Xing Wu
UNC-31 or its mammalian homologue, Ca(2+)-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca(2+)-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca(2+) level (pre-flash Ca(2+) was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca(2+) evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex.
Biosensors and Bioelectronics | 2009
Zhaoyu Li; Wei Zhou; Zheng-Xing Wu; Rong Ying Zhang; Tao Xu
Size-controllable micron or nano-disk carbon fiber electrode (CFE) is prepared and demonstrated to be excellent for extra-cellular transmitter release detection at tiny structures and vesicle fusion kinetics analysis with high spatio-temporal resolution. An improved electrochemical etching procedure was employed, for the first time, to fabricate cylindrical fiber with controlled micron or nano-diameter. Afterwards, a facile insulation with polypropylene sheath was employed to completely insulate the whole body of the thinned fiber, and an ultrasmall-disk sensing area was finally produced by cutting of the insulated fibers. Scanning electron microscopy (SEM) was employed to characterize the ultrasmall geometry size of the fabricated electrode and to show the tight adherence of the insulation sheath on the fiber. The cut ends of the electrodes were also shown to be smooth, clean and without obvious jagged layer. The fabricated micron or nano-disk carbon electrodes show ideal steady-state voltammetric behavior with satisfying reversibility. Subsequently, the performance of the ultrasmall-disk CFE for amperometric detection of cell secretion was characterized. Results showed that, compared to the conventional micro-disk CFE, the etched small disk CFE possesses higher sensitivity due to its obviously improved signal-to-noise level, which enables minute amounts of 3000 oxidizable molecules to be detectable. The nano-disk CFE was shown to be particularly ideal for analysis of fusion kinetics, due to its avoidance of diffusion broadening of the detected spikes, which is the inherent defect of the conventional micro-CFE technique.
Biochemical and Biophysical Research Communications | 2008
Zhitao Hu; Mao-Rong Chen; Zhao Ping; Yongming Dong; Rongying Zhang; Tao Xu; Zheng-Xing Wu
Synaptotagmins (Syts) are calcium-binding proteins which are conserved from nematodes to humans. Fifteen Syts have been identified in mammalian species. Syt I is recognized as a Ca(2+) sensor for the synchronized release of synaptic vesicles in some types of neurons, but its role in the secretion of dense core vesicles (DCVs) remains unclear. The function of Syt IV is of particular interest because it is rapidly up-regulated by chronic depolarization and seizures. Using RNAi-mediated gene silencing, we have explored the role of Syt I and IV on secretion in a pituitary gonadotrope cell line. Downregulation of Syt IV clearly reduced Ca(2+)-triggered exocytosis of dense core vesicles (DCVs) in LbetaT2 cells. Syt I silencing, however, had no effect on vesicular release.
Protein & Cell | 2010
Yaming Jiu; Yang Yue; Song Yang; Lin Liu; Jun-Wei Yu; Zheng-Xing Wu; Tao Xu
Animals integrate various environmental stimuli within the nervous system to generate proper behavioral responses. However, the underlying neural circuits and molecular mechanisms are largely unknown. The insulinlike signaling pathway is known to regulate dauer formation, fat metabolism, and longevity in Caenorhabditis elegans (C. Elegans). Here, we show that this highly conserved signaling pathway also functions in the integrative response to an olfactory diacetyl and a gustatory Cu2+ stimuli. Worms of wild-type N2 Bristol displayed a strong avoidance to the Cu2+ barrier in the migration pathway to the attractive diacetyl. Mutants of daf-2 (insulin receptor), daf-18 (PTEN lipid phosphatase), pdk-1 (phosphoinositide-dependent kinase), akt-1/-2 (Akt/PKB kinase) and sgk-1 (serum- and glucocorticoidinducible kinase) show severe defects in the elusion from the Cu2+. Mutations in DAF-16, a forkhead-type transcriptional factor, suppress the integrative defects of daf-2 and akt-1/-2 mutants. We further report that neither cGMP nor TGFβ pathways, two other dauer formation regulators, likely plays a role in the integrative learning. These results suggest that the insulin-like signaling pathway constitutes an essential component for sensory integration and decision-making behavior plasticity.