Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengguang Guo is active.

Publication


Featured researches published by Zhengguang Guo.


Molecular & Cellular Proteomics | 2011

A Tool for Biomarker Discovery in the Urinary Proteome: A Manually Curated Human and Animal Urine Protein Biomarker Database

Chen Shao; Menglin Li; Xundou Li; Lilong Wei; Lisi Zhu; Fan Yang; Lulu Jia; Yi Mu; Jiangning Wang; Zhengguang Guo; Dan Zhang; Jianrui Yin; Zhigang Wang; Wei Sun; Zhengguo Zhang; Youhe Gao

Urine is an important source of biomarkers. A single proteomics assay can identify hundreds of differentially expressed proteins between disease and control samples; however, the ability to select biomarker candidates with the most promise for further validation study remains difficult. A bioinformatics tool that allows accurate and convenient comparison of all of the existing related studies can markedly aid the development of this area. In this study, we constructed the Urinary Protein Biomarker (UPB) database to collect existing studies of urinary protein biomarkers from published literature. To ensure the quality of data collection, all literature was manually curated. The website (http://122.70.220.102/biomarker) allows users to browse the database by disease categories and search by protein IDs in bulk. Researchers can easily determine whether a biomarker candidate has already been identified by another group for the same disease or for other diseases, which allows for the confidence and disease specificity of their biomarker candidate to be evaluated. Additionally, the pathophysiological processes of the diseases can be studied using our database with the hypothesis that diseases that share biomarkers may have the same pathophysiological processes. Because of the natural relationship between urinary proteins and the urinary system, this database may be especially suitable for studying the pathogenesis of urological diseases. Currently, the database contains 553 and 275 records compiled from 174 and 31 publications of human and animal studies, respectively. We found that biomarkers identified by different proteomic methods had a poor overlap with each other. The differences between sample preparation and separation methods, mass spectrometers, and data analysis algorithms may be influencing factors. Biomarkers identified from animal models also overlapped poorly with those from human samples, but the overlap rate was not lower than that of human proteomics studies. Therefore, it is not clear how well the animal models mimic human diseases.


PLOS ONE | 2015

A Proteomic Analysis of Individual and Gender Variations in Normal Human Urine and Cerebrospinal Fluid Using iTRAQ Quantification.

Zhengguang Guo; Yang Zhang; Lili Zou; Danqi Wang; Chen Shao; Yajie Wang; Wei Sun; Liwei Zhang

Urine and cerebrospinal fluid (CSF) are two important biofluids used for disease biomarker discovery. For differential proteomic analysis, it is essential to evaluate individual and gender variations. In this study, we characterized urinary and CSF proteomes of 14 healthy volunteers with regard to individual and gender variations using 2DLC-MS/MS analysis and 8-plex iTRAQ quantification. A total of 968/512 urinary/CSF proteins were identified, with 406/280 quantified in all individuals. The median inter-individual coefficients of variation (CVs) were 0.262 and 0.183 for urinary and CSF proteomes, respectively. Cluster analysis showed that male and female urinary proteomes exhibited different patterns, though CSF proteome showed no remarkable gender differences. In comparison with CSF proteome, urinary proteome showed higher individual variation. Further analysis revealed that individual variation was not correlated with protein abundance. The minimum sample size for proteomic analysis with a 2-fold change was 10 (4/5 for males/females using iTRAQ quantification) for urinary or 8 for CSF proteome. Intracellular proteins leaked from exfoliative cells tended to have higher CVs, and extracellular proteins secreted from urinary tract or originating from plasma tended to have lower CVs. The above results might be beneficial for differential proteomic analysis and biomarker discovery.


Journal of Proteome Research | 2012

Proteomics Strategy to Identify Substrates of LNX, a PDZ Domain- containing E3 Ubiquitin Ligase

Zhengguang Guo; Eli Song; Sucan Ma; Xiaorong Wang; Shijuan Gao; Chen Shao; Siqi Hu; Lulu Jia; Rui Tian; Tao Xu; Youhe Gao

Ubiquitin ligases (E3s) confer specificity to ubiquitination by recognizing target substrates. However, the substrates of most E3s have not been extensively discovered, and new methods are needed to efficiently and comprehensively identify these substrates. Mostly, E3s specifically recognize substrates via their protein interaction domains. We developed a novel integrated strategy to identify substrates of E3s containing protein interaction domains on a proteomic scale. The binding properties of the protein interaction domains were characterized by screening a random peptide library using a yeast two-hybrid system. Artificial degrons, consisting of a preferential ubiquitination sequence and particular interaction domain-binding motifs, were tested as potential substrates by in vitro ubiquitination assays. Using this strategy, not only substrates but also nonsubstrate regulators can be discovered. The detailed substrate recognition mechanisms, which are useful for drug discovery, can also be characterized. We used the Ligand of Numb protein X (LNX) family of E3s, a group of PDZ domain-containing RING-type E3 ubiquitin ligases, to demonstrate the feasibility of this strategy. Many potential substrates of LNX E3s were identified. Eight of the nine selected candidates were ubiquitinated in vitro, and two novel endogenous substrates, PDZ-binding kinase (PBK) and breakpoint cluster region protein (BCR), were confirmed in vivo. We further revealed that the LNX1-mediated ubiquitination and degradation of PBK inhibited cell proliferation and enhanced sensitivity to doxorubicin-induced apoptosis. The substrate recognition mechanism of LNX E3s was also characterized; this process involves the recognition of substrates via their specific PDZ domains by binding to the C-termini of the target proteins. This strategy can potentially be extended to a variety of E3s that contain protein interaction domain(s), thereby serving as a powerful tool for the comprehensive identification of their substrates on a proteomic scale.


Journal of Translational Medicine | 2015

Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC–MS/MS and iTRAQ quantification

Zhengguang Guo; Xuejiao Liu; Menglin Li; Chen Shao; Jianling Tao; Wei Sun; M Li

BackgroundDiabetic nephropathy (DN) is the leading cause of chronic kidney failure and end-stage kidney disease. More accurate and non-invasive test for the diagnosis and monitoring the progression of DN is urgently needed for the better care of such patients.MethodsIn this study we utilized urinary glycoproteome to discover the differential proteins during the course of type 2 DN. The urinary glycoproteins from normal controls, normalbuminuira, microalbuminura, and macroalbuminuria patients were enriched by concanavalin A (ConA) and analyzed by 2DLC/MS/MS and isobaric tags for relative and absolute quantitation quantification.ResultsA total of 478 proteins were identified and 408 were annotated as N-linked glycoproteins. A total of 72, 107 and 123 differential proteins were identified in normalbuminuria, microalbuminuria and macroalbuminuria, respectively. By bioinformatics analysis, in normalbuminruia state, cell proliferation and cell movement were activated, which might reflect the compensatory phase during the disease development. In micro- and macro-albuminuria, cell death and apoptosis was activated, which might reflect the de-compensatory phase. Pathway analysis showed acute phase proteins, the member of high density lipoprotein and low density lipoprotein proteins were changed, indicating the role of the inflammatory response and lipid metabolism abnormality in the pathogenesis of DN. Six selected differential proteins were validated by Western Blot. Alpha-1-antitrypsin (SERPINA1) and Ceruloplasmin are the two markers with excellent area under curve values (0.929 and 1.000 respectively) to distinguish the microalbuminuria and normalbuminuria. For the first time, we found pro-epidermal growth factor and prolactin-inducible protein were decreased in macroalbuminuria stage, which might reflect the inhibition of cell viability and the activation of cell death in kidney.ConclusionsAbove data indicated that urinary glycoproteome could be useful to distinguish the differences in protein profiles in different stages in DN, which will help better individualized care of patients in DN.


PLOS ONE | 2013

Using an isolated rat kidney model to identify kidney origin proteins in urine.

Lulu Jia; Xundou Li; Chen Shao; Lilong Wei; Menglin Li; Zhengguang Guo; Zhihong Liu; Youhe Gao

The use of targeted proteomics to identify urinary biomarkers of kidney disease in urine can avoid the interference of serum proteins. It may provide better sample throughput, higher sensitivity, and specificity. Knowing which urinary proteins to target is essential. By analyzing the urine from perfused isolated rat kidneys, 990 kidney origin proteins with human analogs were identified in urine. Of these proteins, 128 were not found in normal human urine and may become biomarkers with zero background. A total of 297 proteins were not found in normal human plasma. These proteins will not be influenced by other normal organs and will be kidney specific. The levels of 33 proteins increased during perfusion with an oxygen-deficient solution compared to those perfused with oxygen. The 75 proteins in the perfusion-driven urine have a significantly increased abundance ranking compared to their ranking in normal human urine. When compared with existing candidate biomarkers, over ninety percent of the kidney origin proteins in urine identified in this study have not been examined as candidate biomarkers of kidney diseases.


Scientific Reports | 2017

A comprehensive analysis and annotation of human normal urinary proteome

Mindi Zhao; Menglin Li; Yehong Yang; Zhengguang Guo; Ying Sun; Chen Shao; M Li; Wei Sun; Youhe Gao

Biomarkers are measurable changes associated with the disease. Urine can reflect the changes of the body while blood is under control of the homeostatic mechanisms; thus, urine is considered an important source for early and sensitive disease biomarker discovery. A comprehensive profile of the urinary proteome will provide a basic understanding of urinary proteins. In this paper, we present an in-depth analysis of the urinary proteome based on different separation strategies, including direct one dimensional liquid chromatography–tandem mass spectrometry (LC/MS/MS), two dimensional LC/MS/MS, and gel-eluted liquid fraction entrapment electrophoresis/liquid-phase isoelectric focusing followed by two dimensional LC/MS/MS. A total of 6085 proteins were identified in healthy urine, of which 2001 were not reported in previous studies and the concentrations of 2571 proteins were estimated (spanning a magnitude of 106) with an intensity-based absolute quantification algorithm. The urinary proteins were annotated by their tissue distribution. Detailed information can be accessed at the “Human Urine Proteome Database” (www.urimarker.com/urine).


PLOS ONE | 2015

Experimental study on differences in clivus chordoma bone invasion: an iTRAQ-based quantitative proteomic analysis.

Zhen Wu; Liang Wang; Zhengguang Guo; Ke Wang; Yang Zhang; Kaibing Tian; Junting Zhang; Wei Sun; Chunjiang J. Yu

Although a bone tumor, significant differences in the extent of bone invasion exist in skull base chordoma, which directly affect the extent of surgical resection, and have an impact on its prognosis. However, the underlying mechanism of the phenomenon is not clearly understood. Therefore, we used an iTRAQ-based quantitative proteomics strategy to identify potential molecular signatures, and to find predictive markers of discrepancy in bone invasion of clivus chordoma. According to bone invasive classification criteria, 35 specimens of clivus chordoma were calssified to be either endophytic type (Type I) or exophytic type (Type II). An initial screening of six specimens of endophytic type and six of exophytic was performed, and 250 differentially expressed proteins were identified. Through the GO and IPA analysis, we found evidence that the expression of inflammatory activity-associated proteins up-regulated in endophytic type, whereas the expression of cell motility-associated proteins up-regulated in exophytic ones. Moreover, TGFβ1 and mTOR signal pathway seemed to be related with bone invasion. Thus, TGFβ1, PI3K, Akt, mTOR, and PTEN were validated in the following 23 samples by immune histochemistry and Western blot. The expression levels of TGFβ1 and PTEN were significantly lower in the endophytic type than in the exophytic ones. It was found that TGFβ1 may play an important role in its bone invasion. The mechanisms may be related with conducting an increased inflammatory cell response and a decline in cytoskeletal protein expression. PTEN is confirmed to be associated with the degree of bone invasion. The PI3K/AKT/mTOR signaling pathway might be associated with the bone invasion, but still needs a larger sample size to be verified These results, for the first time, not only demonstrate the biological changes that occur in different growth patterns from the perspective of proteomics, but also provide novel markers that may help to reveal the mechanisms behind clivus chordomas.


PLOS ONE | 2013

Screening E3 Substrates Using a Live Phage Display Library

Zhengguang Guo; Xiaorong Wang; Hui-Hua Li; Youhe Gao

Ubiquitin ligases (E3s) determine specificity of ubiquitination by recognizing target substrates. However, most of their substrates are unknown. Most known substrates have been identified using distinct approaches in different laboratories. We developed a high-throughput strategy using a live phage display library as E3 substrates in in vitro screening. His-ubiquitinated phage, enriched with Ni-beads, could effectively infect E. coli for amplification. Sixteen natural potential substrates and many unnatural potential substrates of E3 MDM2 were identified through 4 independent screenings. Some substrates were identified in different independent experiments. Additionally, 10 of 12 selected candidates were ubiquitinated by MDM2 in vitro, and 3 novel substrates, DDX42, TP53RK and RPL36a were confirmed ex vivo. The whole strategy is rather simple and efficient. Non-degradation substrates can be discovered. This strategy can be extended to any E3s as long as the E3 does not ubiquitinate the empty phage.


Journal of Proteome Research | 2017

Comprehensive Map and Functional Annotation of Human Pituitary and Thyroid Proteome

Xiaoyan Liu; Zhengguang Guo; Haidan Sun; Wenting Li; Wei Sun

Knowledge about human tissue proteome will provide insights into health organ physiology. To construct a comprehensive data set of human pituitary and thyroid proteins, post-mortem pituitaries and thyroids from 10 normal individuals were used. The pooled samples were prepared using two methods. One part of the sample was processed using 14 high-abundance proteins immunoaffinity column. The other part was directly subjected to digestion. Finally, a total of 7596 proteins in pituitary and 5602 proteins in thyroid with high confidence were identified, with 6623 and 4368 quantified, respectively. A total of 5781 of pituitary and 3178 of thyroid proteins have not been previously reported in the normal pituitary and thyroid proteome. Comparison of pituitary and thyroid proteome indicated that thyroid prefers to be involved in nerve system regeneration and metabolic regulation, while pituitary mainly performs functions of signal transduction and cancer modulation. Our results, for the first time, comprehensively profiled and functionally annotated the largest high-confidence data set of proteome of two important endocrine glands, pituitary and thyroid, which is important for further studies on biomarker identification and molecular mechanisms of pituitary and thyroid disorders. The mapping results can be freely downloaded at http://www.urimarker.com/pituitary/ and http://www.urimarker.com/thyroid/ . The raw data are available via ProteomeXchange with identifier PXD006471.


Proteomics Clinical Applications | 2018

A Comparative Proteomics Analysis of Five Body Fluids: Plasma, Urine, Cerebrospinal Fluid, Amniotic Fluid, and Saliva

Mindi Zhao; Yehong Yang; Zhengguang Guo; Chen Shao; Haidan Sun; Yang Zhang; Ying Sun; Yaoran Liu; Yijun Song; Liwei Zhang; Qian Li; Juntao Liu; M Li; Youhe Gao; Wei Sun

Body fluid is considered a rich source of disease biomarkers. Proteins in many body fluids have potential clinical applications for disease diagnostic and prognostic predictions.

Collaboration


Dive into the Zhengguang Guo's collaboration.

Top Co-Authors

Avatar

Chen Shao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wei Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Youhe Gao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Menglin Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

M Li

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Yang Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Liwei Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Mindi Zhao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yehong Yang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ying Sun

Peking Union Medical College Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge