Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenghe Li is active.

Publication


Featured researches published by Zhenghe Li.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70

Judit Pogany; Jozsef Stork; Zhenghe Li; Peter D. Nagy

To gain insights into the functions of a viral RNA replicase, we have assembled in vitro and entirely from nonplant sources, a fully functional replicase complex of Tomato bushy stunt virus (TBSV). The formation of the TBSV replicase required two purified recombinant TBSV replication proteins, which were obtained from E. coli, the viral RNA replicon, rATP, rGTP, and a yeast cell-free extract. The in vitro assembly of the replicase took place in the membraneous fraction of the yeast extract, in which the viral replicase-RNA complex became RNase- and proteinase-resistant. The assembly of the replicase complex required the heat shock protein 70 (Hsp70 = yeast Ssa1/2p) present in the soluble fraction of the yeast cell-free extract. The assembled TBSV replicase performed a complete replication cycle, synthesizing RNA complementary to the provided RNA replicon and using the complementary RNA as template to synthesize new TBSV replicon RNA.


Journal of Virology | 2008

Cdc34p Ubiquitin-Conjugating Enzyme Is a Component of the Tombusvirus Replicase Complex and Ubiquitinates p33 Replication Protein

Zhenghe Li; Daniel Barajas; Tadas Panavas; David A. Herbst; Peter D. Nagy

ABSTRACT To identify host proteins interacting with Tomato bushy stunt virus (TBSV) replication proteins in a genome-wide scale, we have used a yeast (Saccharomyces cerevisiae) proteome microarray carrying 4,088 purified proteins. This approach led to the identification of 58 yeast proteins that interacted with p33 replication protein. The identified host proteins included protein chaperones, ubiquitin-associated proteins, translation factors, RNA-modifying enzymes, and other proteins with yet-unknown functions. We confirmed that 19 of the identified host proteins bound to p33 in vitro or in a split-ubiquitin-based two-hybrid assay. Further analysis of Cdc34p E2 ubiquitin-conjugating enzyme, which is one of the host proteins interacting with p33, revealed that Cdc34p is a novel component of the purified viral replicase. Downregulation of Cdc34p expression in yeast, which supports replication of a TBSV replicon RNA (repRNA), reduced repRNA accumulation and the activity of the tombusvirus replicase by up to fivefold. Overexpression of wild-type Cdc34p, but not that of an E2-defective mutant of Cdc34p, increased repRNA accumulation, suggesting a significant role for the ubiquitin-conjugating enzyme function of Cdc34p in TBSV replication. Also, Cdc34p was able to ubiquitinate p33 in vitro. In addition, we have shown that p33 becomes ubiquitinated in vivo. We propose that ubiquitination of p33 likely alters its function or affects the recruitment of host factors during TBSV replication.


PLOS Pathogens | 2010

Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis.

Zhenghe Li; Judit Pogany; Steven Tupman; Anthony M. Esposito; Terri Goss Kinzy; Peter D. Nagy

Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication.


RNA Biology | 2011

Diverse roles of host RNA binding proteins in RNA virus replication

Zhenghe Li; Peter D. Nagy

Plus-strand (+)RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral (+)RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse (+)RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that (+)RNA viruses could utilize different RBPs to perform similar functions. Moreover, different (+)RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology.


Phytopathology | 2005

Tobacco curly shoot virus DNAβ Is Not Necessary for Infection but Intensifies Symptoms in a Host-Dependent Manner

Zhenghe Li; Yan Xie; Xueping Zhou

ABSTRACT We demonstrated that only 11 isolates were associated with DNAbeta among 39 Tobacco curly shoot virus (TbCSV)-infected, field-collected samples. An infectious clone of TbCSV-[Y35], an isolate associated with DNAbeta, induced severe upward leaf curling in Nicotiana benthamiana. In the presence of its cognate DNAbeta (TbCSV-[Y35] DNAbeta), the symptom changed to a downward leaf curl. Furthermore, TbCSV-[Y35] alone was able to induce severe symptoms in tobacco and tomato plants, although co-infection with DNAbeta intensified symptom severity in tobacco plants. In contrast to other begomovirus-DNAbeta complexes, the satellite had no effect on the accumulation of TbCSV-[Y35] DNA in systemically infected host plants. The betaC1 mutant caused symptoms comparable to those induced by TbCSV-[Y35] in the absence of DNAbeta. TbCSV-[Y35] can be transmitted between plants by a whitefly vector, regardless of the presence or absence of DNAbeta. For a TbCSV isolate not associated with DNAbeta (TbCSV-[Y1]), systemic infection of N. benthamiana induced symptoms resembling those of TbCSV-[Y35]. Co-infection of TbCSV-[Y1] with TbCSV-[Y35] DNAbeta induced symptoms similar to those following infection by TbCSV-[Y35] and its DNAbeta. This indicates that TbCSV DNAbeta is not necessary for infection but intensifies symptoms in a host-dependent manner. Thus, TbCSV may represent an evolutionary intermediate between the DNAbeta requiring begomoviruses and the truly monopartite begomoviruses. The relevance of these results to our present understanding of the evolution of begomovirus-satellite disease complexes is discussed.


PLOS Pathogens | 2014

Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression.

Fangfang Li; Changjun Huang; Zhenghe Li; Xueping Zhou

In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.


Archives of Virology | 2004

Molecular characterization of tomato-infecting begomoviruses in Yunnan, China

Zhenghe Li; X. P. Zhou; Xingzhi Zhang; Yirui Xie

Summary.The importance of diseases of tomato caused by begomoviruses is increasing worldwide. Here, we report that several begomoviruses are associated with tomato leaf curl disease in Yunnan province, China. 14 tomato samples showing leaf curl symptoms were collected in three districts in Yunnan, and they fell into four groups according to their reaction with a panel of 16 monoclonal antibodies in TAS-ELISA. Comparison of partial DNA-A sequences amplified with degenerate primers confirmed the existence of several types of begomoviruses. The complete DNA-A sequences of 4 isolates (Y25, Y41, Y72, Y161), corresponding to the four groups, were determined. Sequence comparisons and phylogenetic analysis revealed that they corresponded to four previously identified begomoviruses. Groups I, II and IV are most closely related to Tomato yellow leaf curl China virus (TYLCCNV), Tobacco curly shoot virus (TbCSV) and Tobacco leaf curl Yunnan virus (TbLCYNV), respectively, while Group III shows close relationships with Tomato yellow leaf curl Thailand virus (TYLCTHV). In addition, all isolates in Groups I and III were found to be associated with DNAβ molecules, while satellite DNA was not found in virus isolates in Groups II and IV. The complete DNAβ sequences of three isolates from Group III (Y72, Y77, Y79) were determined. Sequence analysis showed that Y72β, Y77β and Y79β seem to be different from other characterised DNAβ, sharing the highest nucleotide sequence identity with DNAβ of TbCSV.


Virology | 2010

Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host.

Venugopal Mendu; Menghsuen Chiu; Daniel Barajas; Zhenghe Li; Peter D. Nagy

To identify host proteins interacting with the membrane-bound replication proteins of tombusviruses, we performed membrane yeast two-hybrid (MYTH) screens based on yeast cDNA libraries. The screens led to the identification of 57 yeast proteins interacting with replication proteins of two tombusviruses. Results from a split ubiquitin assay with 12 full-length yeast proteins and the viral replication proteins suggested that the replication proteins of two tombusviruses interact with a similar set of host proteins. Follow-up experiments with the yeast Cpr1p cyclophilin, which has prolyl isomerase activity that catalyzes cis-trans isomerization of peptidyl-prolyl bonds, confirmed that Cpr1p interacted with the viral p33 replication protein in yeast and in vitro. Replication of Tomato bushy stunt virus replicon RNA increased in cpr1Δ yeast, while over-expression of Cpr1p decreased viral replication. We also show that the Ess1p parvulin prolyl isomerase partly complements Cpr1p function as an inhibitor of tombusvirus replication.


PLOS Pathogens | 2015

Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

Qiang Wang; Xiaonan Ma; Shasha Qian; Xin Zhou; Kai Sun; Xiaolan Chen; Xueping Zhou; Andrew O. Jackson; Zhenghe Li

Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.


Science China-life Sciences | 2012

Virus-induced gene silencing and its application in plant functional genomics

Changjun Huang; Yajuan Qian; Zhenghe Li; Xueping Zhou

Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.

Collaboration


Dive into the Zhenghe Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge