Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengkai Xu is active.

Publication


Featured researches published by Zhengkai Xu.


The Plant Cell | 2012

Opaque1 Encodes a Myosin XI Motor Protein That Is Required for Endoplasmic Reticulum Motility and Protein Body Formation in Maize Endosperm

Guifeng Wang; Fang Wang; Gang Wang; Fei Wang; Xiaowei Zhang; Mingyu Zhong; Jin Zhang; Dianbin Lin; Yuanping Tang; Zhengkai Xu; Rentao Song

Grain texture is a key agronomic trait for cereal crops. The positional cloning of maize classical seed mutant opaque1 revealed a molecular mechanism for seed hardness determination. The findings highlight that maize myosin XI-I plays an important role in protein body biogenesis by affecting endoplasmic reticulum morphology and motility. Myosins are encoded by multigene families and are involved in many basic biological processes. However, their functions in plants remain poorly understood. Here, we report the functional characterization of maize (Zea mays) opaque1 (o1), which encodes a myosin XI protein. o1 is a classic maize seed mutant with an opaque endosperm phenotype but a normal zein protein content. Compared with the wild type, o1 endosperm cells display dilated endoplasmic reticulum (ER) structures and an increased number of smaller, misshapen protein bodies. The O1 gene was isolated by map-based cloning and was shown to encode a member of the plant myosin XI family (myosin XI-I). In endosperm cells, the O1 protein is associated with rough ER and protein bodies. Overexpression of the O1 tail domain (the C-terminal 644 amino acids) significantly inhibited ER streaming in tobacco (Nicotiana benthamiana) cells. Yeast two-hybrid analysis suggested an association between O1 and the ER through a heat shock protein 70–interacting protein. In summary, this study indicated that O1 influences protein body biogenesis by affecting ER morphology and motility, ultimately affecting endosperm texture.


Genetics | 2011

Opaque7 Encodes an Acyl Activating Enzyme-like Protein that Affects Storage Protein Synthesis in Maize Endosperm

Gang Wang; Xiaoliang Sun; Guifeng Wang; Fei Wang; Qiang Gao; Xin Sun; Yuanping Tang; Chong Chang; Jinsheng Lai; Lihuang Zhu; Zhengkai Xu; Rentao Song

In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysine content. In this study, the O7 gene was cloned by map-based cloning and confirmed by transgenic functional complementation and RNAi. The o7-ref allele has a 12-bp in-frame deletion. The four-amino-acid deletion caused low accumulation of o7 protein in vivo. The O7 gene encodes an acyl-activating enzyme with high similarity to AAE3. The opaque phenotype of the o7 mutant was produced by the reduction of protein body size and number caused by a decrease in the α-zeins concentrations. Analysis of amino acids and metabolites suggested that the O7 gene might affect amino acid biosynthesis by affecting α-ketoglutaric acid and oxaloacetic acid. Transgenic rice seeds containing RNAi constructs targeting the rice ortholog of maize O7 also produced lower amounts of seed proteins and displayed an opaque endosperm phenotype, indicating a conserved biological function of O7 in cereal crops. The cloning of O7 revealed a novel regulatory mechanism for storage protein synthesis and highlighted an effective target for the genetic manipulation of storage protein contents in cereal seeds.


Plant Molecular Biology | 2009

Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize α-zein super gene family

Lingna Feng; Jia Zhu; Gang Wang; Yuanping Tang; Hanjun Chen; Weibo Jin; Fei Wang; Bing Mei; Zhengkai Xu; Rentao Song

The α-zein super gene family encodes the most predominant storage protein in maize (Zea mays) endosperm. In maize inbred line B73, it consists of four gene families with 41 member genes. In this study, we combined quantitative real-time PCR and random clone sequencing to successfully profile the expression of α-zein super gene family during endosperm development. We found that only 18 of the 41 member genes were expressed, and their expression levels diverge greatly. At the gene family level, all families had characteristic “up-and-down” oscillating expressional patterns that diverged into two major groups. At the individual gene level, member genes showed dramatic divergence of expression patterns, indicating fast differentiation of their expression regulation. A comparison study among different inbred lines revealed significantly different expressed gene sets, indicating the existence of highly diverged haplotypes. Large gene families containing long gene clusters, e.g. z1A or z1C, mainly contributed the highly divergent haplotypes. In addition, allelic genes also showed significant divergence in their expressional levels. These results indicated a highly dynamic and fast evolving nature to the maize α-zein super gene family, which might be a common feature for other large gene families.


Plant Cell Reports | 2010

An expression analysis of 57 transcription factors derived from ESTs of developing seeds in Maize (Zea mays).

Guifeng Wang; Hui Wang; Jia Zhu; Jing Zhang; Xiaowei Zhang; Fei Wang; Yuanping Tang; Bing Mei; Zhengkai Xu; Rentao Song

Maize seeds are an important source of food, animal feed, and industrial raw materials. To understand global gene expression and regulation during maize seed development, a normalized cDNA library, covering most of the developmental stages of maize seeds, was constructed. Sequencing analysis of 10,848 randomly selected clones identified 6,630 unique ESTs. Among them, 57 putative transcription factors (TFs) were identified. The TFs belong to seven different super-families, specifically 17 Zinc-finger, 13 bZIP, 8 bHLH, 6 MADS, 7 MYB, 3 Homedomain, and 3 AP2/EREBP. The spatial and temporal expression of the TFs was analyzed by semi-quantitative RT-PCR with representative tissue types and seeds at different developmental stages, revealing their diverse expression patterns and expression levels. One-third (19) of the maize TFs was found their putative orthologs in Arabidopsis. Similar expression patterns were observed in both maize and Arabidopsis for the majority of orthologous pairs (15 out of 19), suggesting their conserved functions during seed development. In conclusion, the systematic analysis of maize seed TFs has provided valuable insight into transcriptional regulation during maize seed development.


PLOS ONE | 2012

Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

Nan Zhang; Zhenyi Qiao; Zheng Liang; Bing Mei; Zhengkai Xu; Rentao Song

Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.


Gene | 2014

Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana

Chenguang Zhu; Qianlan Fan; Wei Wang; Chunlei Shen; Xiangzong Meng; Yuanping Tang; Bing Mei; Zhengkai Xu; Rentao Song

The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%-48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%-43%), total GS activity (39%-45%) and soluble protein concentration (23%-24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the hosts nitrogen use efficiency.


Plant Cell Reports | 2011

The characterization of two peroxiredoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress

Huijuan Yuan; Xiangzong Meng; Qiang Gao; Wufei Qu; Tengjiao Xu; Zhengkai Xu; Rentao Song

Peroxiredoxins (Prxs), a group of antioxidant enzymes, are an important component of the oxidative defense system and have been demonstrated to function as peroxidases, sensors of H2O2-mediated signaling and/or chaperones. In this study, a cDNA library was constructed from a halotolerant alga, Dunaliellaviridis, and was used in a functional complementation screen for antioxidative genes in an oxidative sensitive yeast mutant. Two Prx genes, DvPrx1 and DvPrx2, were obtained from this screen. These two genes were classified as type II Prx and 2-Cys Prx based on amino acid sequence and phylogenetic analysis. When over-expressed in yeast cells, both Prx genes were able to confer better oxidative tolerance and decrease the level of reactive oxygen species (ROS). Subcellular localization experiments in tobacco cells revealed that both DvPrx1 and DvPrx2 were localized in the cytosol. The transcription of DvPrx1 and DvPrx2 can be induced by hypersalinity shock, but is not obviously affected by treatment with high levels of oxidant. Our results shed light on the function and regulation of Prx genes from Dunaliella and their potential roles in salt tolerance.


Genetica | 2010

An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome

Fei Wang; Zhaoying Li; Jun Fan; Pengfei Li; Wei Hu; Gang Wang; Zhengkai Xu; Rentao Song

Transposon tagging is an important tool for gene isolation and functional studies. In maize, several transposon-tagging systems have been developed, mostly using Activator/Dissociation (Ac/Ds) and Mutator systems. Here, we establish another Ac-based transposon system with the donor Ac tightly linked with sugary1 (su1) on maize chromosome 4S. Newly transposed Ac (tr-Acs) were detected based on a negative dosage effect, and long-distance-transposed Ac events were identified and isolated from the donor Ac by a simple backcross scheme. In this study, we identified 208 independent long-distance-transposed Ac lines. Thirty-one flanking sequences of these tr-Acs were isolated and localized in the maize genome. As found in previous studies, the tr-Acs preferentially inserted into genic sequences. The distribution of tr-Acs is not random. In our study, the tr-Acs preferentially transposed into chromosomes 1, 2, 9 and 10. We discuss the preferential distribution of tr-Acs from Ac systems. Our system is complementary to two other Ac-based regional-mutagenesis systems in maize, and the combined use of these systems will achieve an even and high-density distribution of Ac elements throughout the maize genome for functional-genomics studies.


African Journal of Biotechnology | 2013

Rapid approach for cloning bacterial single-genes directly from soils

Chenguang Zhu; Peipei Wang; Chunlei Shen; Wei Wang; Yuanping Tang; Bing Mei; Zhengkai Xu; Rentao Song

Obtaining functional genes of bacteria from environmental samples usually depends on library-based approach which is not favored as its large amount of work with small possibility of positive clones. A kind of bacterial single-gene encoding glutamine synthetase (GS) was selected as example to detect the efficiency of cloning strategy in this study. Five GS genes were directly cloned from soils using degenerate primers with two steps of nested polymerase chains reactions. The genes showed 94 to 99% amino acid identities to the homologs in the known database, and encoded proteins affiliated to GS I and GS II families, respectively. All the five genes could rescue the growth of Escherichia coli glutamine auxotroph mutant ET6017 in minimum medium (ammonium chloride was sole nitrogen source in this medium). This study develops one rapid approach for cloning bacterial single-genes directly from soils. Comparing with the conventional strategies for gene cloning from complex environmental samples, this method did not need making genomic library and isolating target genes from large amount of library clones. This approach distinctively demonstrates its advantages of rapidity and effectiveness particularly when it aims at cloning short single-genes that had known homologs in all kinds of nucleic acid databases. Keywords: Gene cloning, soil, glutamine synthetase, nested PCR, single-gene African Journal of Biotechnology Vol. 12(32), pp. 5029-5034


Plant Molecular Biology | 2010

The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes

Liangliang Zhou; Binbin Huang; Xiangzong Meng; Gang Wang; Fei Wang; Zhengkai Xu; Rentao Song

Collaboration


Dive into the Zhengkai Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangzong Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge