Zhengyu Feng
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhengyu Feng.
Applied and Environmental Microbiology | 2002
Denise K. Zinniel; Patricia A. Lambrecht; N. Beth Harris; Zhengyu Feng; Daniel Kuczmarski; Phyllis Higley; Carol A. Ishimaru; Alahari Arunakumari; Raúl G. Barletta; Anne K. Vidaver
ABSTRACT Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log10 CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log10 CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log10 CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log10 CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications.
Antimicrobial Agents and Chemotherapy | 2003
Zhengyu Feng; Raúl G. Barletta
ABSTRACT d-Cycloserine (DCS) targets the peptidoglycan biosynthetic enzymes d-alanine racemase (Alr) and d-alanine:d-alanine ligase (Ddl). Previously, we demonstrated that the overproduction of Alr in Mycobacterium smegmatis determines a DCS resistance phenotype. In this study, we investigated the roles of both Alr and Ddl in the mechanisms of action of and resistance to DCS in M. smegmatis. We found that the overexpression of either the M. smegmatis or the Mycobacterium tuberculosis ddl gene in M. smegmatis confers resistance to DCS, but at lower levels than the overexpression of the alr gene. Furthermore, a strain overexpressing both the alr and ddl genes displayed an eightfold-higher level of resistance. To test the hypothesis that inhibition of Alr by DCS decreases the intracellular pool of d-alanine, we determined the alanine pools in M. smegmatis wild-type and recombinant strains with or without DCS treatment. Alr-overproducing strain GPM14 cells not exposed to DCS displayed almost equimolar amounts of l- and d-alanine in the steady state. The wild-type strain and Ddl-overproducing strains contained a twofold excess of l- over d-alanine. In all strains, DCS treatment led to a significant accumulation of l-alanine and a concomitant decease of d-alanine, with approximately a 20-fold excess of l-alanine in the Ddl-overproducing strains. These data suggest that Ddl is not significantly inhibited by DCS at concentrations that inhibit Alr. This study is of significance for the identification of the lethal target(s) of DCS and the development of novel drugs targeting the d-alanine branch of mycobacterial peptidoglycan biosynthesis.
Antimicrobial Agents and Chemotherapy | 2002
Ofelia Chacon; Zhengyu Feng; N. Beth Harris; Nancy E. Cáceres; L. Garry Adams; Raúl G. Barletta
ABSTRACT Mycobacterium smegmatis is a fast-growing nonpathogenic species particularly useful in studying basic cellular processes of relevance to pathogenic mycobacteria. This study focused on the d-alanine racemase gene (alrA), which is involved in the synthesis of d-alanine, a basic component of peptidoglycan that forms the backbone of the cell wall. M. smegmatis alrA null mutants were generated by homologous recombination using a kanamycin resistance marker for insertional inactivation. Mutants were selected on Middlebrook medium supplemented with 50 mM d-alanine and 20 μg of kanamycin per ml. These mutants were also able to grow in standard and minimal media without d-alanine, giving rise to colonies with a drier appearance and more-raised borders than the wild-type strain. The viability of the mutants and independence of d-alanine for growth indicate that inactivation of alrA does not impose an auxotrophic requirement for d-alanine, suggesting the existence of a new pathway of d-alanine biosynthesis in M. smegmatis. Biochemical analysis demonstrated the absence of any detectable d-alanine racemase activity in the mutant strains. In addition, the alrA mutants displayed hypersusceptibility to the antimycobacterial agent d-cycloserine. The MIC of d-cycloserine for the mutant strain was 2.56 μg/ml, 30-fold less than that for the wild-type strain. Furthermore, this hypersusceptibility was confirmed by the bactericidal action of d-cycloserine on broth cultures. The kinetic of killing for the mutant strain followed the same pattern as that for the wild-type strain, but at a 30-fold-lower drug concentration. This effect does not involve a change in the permeability of the cell wall by this drug and is consistent with the identification of d-alanine racemase as a target of d-cycloserine. This outcome is of importance for the design of novel antituberculosis drugs targeting peptidoglycan biosynthesis in mycobacteria.
Journal of Bacteriology | 2002
Zhengyu Feng; Nancy E. Cáceres; Gautam Sarath; Raúl G. Barletta
NAD(H)-dependent L-alanine dehydrogenase (EC 1.4.1.1) (Ald) catalyzes the oxidative deamination of L-alanine and the reductive amination of pyruvate. To assess the physiological role of Ald in Mycobacterium smegmatis, we cloned the ald gene, identified its promoter, determined the protein expression levels, and analyzed the combined effects of nutrient supplementation, oxygen availability, and growth stage on enzyme activity. High Ald activities were observed in cells grown in the presence of L- or D-alanine regardless of the oxygen availability and growth stage. In exponentially growing cells under aerobic conditions, supplementation with alanine resulted in a 25- to 50-fold increase in the enzyme activity. In the absence of alanine supplementation, 23-fold-higher Ald activities were observed in cells grown exponentially under anaerobic conditions. Furthermore, M. smegmatis ald null mutants were constructed by targeted disruption and were shown to lack any detectable Ald activity. In contrast, the glycine dehydrogenase (EC 1.4.1.10) (Gdh) activity in mutant cells remained at wild-type levels, indicating that another enzyme protein is responsible for the physiologically relevant reductive amination of glyoxylate. The ald mutants grew poorly in minimal medium with L-alanine as the sole nitrogen source, reaching a saturation density 100-fold less than that of the wild-type strain. Likewise, mutants grew to a saturation density 10-fold less than that of the wild-type strain under anaerobic conditions. In summary, the phenotypes displayed by the M. smegmatis ald mutants suggest that Ald plays an important role in both alanine utilization and anaerobic growth.
Microbiology | 2009
Ofelia Chacón; Luiz E. Bermudez; Denise K. Zinniel; Harpreet K. Chahal; Robert J. Fenton; Zhengyu Feng; K. J. Hanford; L. Garry Adams; Raúl G. Barletta
d-Alanine is a structural component of mycobacterial peptidoglycan. The primary route of d-alanine biosynthesis in eubacteria is the enantiomeric conversion from l-alanine, a reaction catalysed by d-alanine racemase (Alr). Mycobacterium smegmatis alr insertion mutants are not dependent on d-alanine for growth and display a metabolic pattern consistent with an alternative pathway for d-alanine biosynthesis. In this study, we demonstrate that the M. smegmatis alr insertion mutant TAM23 can synthesize d-alanine at lower levels than the parental strain. The insertional inactivation of the alr gene also decreases the intracellular survival of mutant strains within primary human monocyte-derived macrophages. By complementation studies, we confirmed that the impairment of alr gene function is responsible for this reduced survival. Inhibition of superoxide anion and nitric oxide formation in macrophages suppresses the differential survival. In contrast, for bacteria grown in broth, both strains had approximately the same susceptibility to hydrogen peroxide, acidified sodium nitrite, low pH and polymyxin B. In contrast, TAM23 exhibited increased resistance to lysozyme. d-Alanine supplementation considerably increased TAM23 viability in nutritionally deficient media and within macrophages. These results suggest that nutrient deprivation in phagocytic cells combined with killing mediated by reactive intermediates underlies the decreased survival of alr mutants. This knowledge may be valuable in the construction of mycobacterial auxotrophic vaccine candidates.
Frontiers in Cellular and Infection Microbiology | 2014
Govardhan Rathnaiah; Elise A. Lamont; N. Beth Harris; Robert J. Fenton; Denise K. Zinniel; Xiao-Fei Liu; Josh Sotos; Zhengyu Feng; Ayala Livneh-Kol; Nahum Y. Shpigel; Charles J. Czuprynski; Srinand Sreevatsan; RaAol G. Barletta
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johnes Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.
Journal of Bacteriology | 1997
Nancy E. Cáceres; N B Harris; J F Wellehan; Zhengyu Feng; Vivek Kapur; Raúl G. Barletta
Fems Microbiology Letters | 1999
N. Beth Harris; Zhengyu Feng; Xiao-Fei Liu; Suat L. G. Cirillo; Jeffrey D. Cirillo; RaAol G. Barletta
Fems Microbiology Letters | 2001
Xiao-Fei Liu; Zhengyu Feng; N. Beth Harris; Jeffrey D. Cirillo; Herve Bercovier; RaAol G. Barletta
Immunogenetics | 2002
Aruna P.N. Ambagala; Zhengyu Feng; Raúl G. Barletta; S. Srikumaran