Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengyu Yuan is active.

Publication


Featured researches published by Zhengyu Yuan.


Antimicrobial Agents and Chemotherapy | 2000

Peptide Deformylase in Staphylococcus aureus: Resistance to Inhibition Is Mediated by Mutations in the Formyltransferase Gene

Peter S. Margolis; Corinne J. Hackbarth; Dennis C. Young; Wen Wang; Dawn Chen; Zhengyu Yuan; Richard G. White; Joaquim Trias

ABSTRACT Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified inStaphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a PBAD-def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. ThedefB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, thedefA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureusΔfmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, thedefB gene could be disrupted in an fmt mutant.


Drug Discovery Today | 2001

Deformylase as a novel antibacterial target.

Zhengyu Yuan; Joaquim Trias; Richard J. White

Bacterial genomics has revealed a plethora of previously unknown targets of potential use in the discovery of novel antibacterial drugs. However, so far little has emerged from this approach. Peptide deformylase is an interesting target that was discovered more than 30 years ago, but was not exploited until recently. The reawakening of interest in this target resulted from an improved understanding of the enzyme, making it a more tractable and attractive target. Information on the properties of the enzyme, such as its three-dimensional structure, the activity of inhibitors, its resistance and suitability as a target are discussed.


Antimicrobial Agents and Chemotherapy | 2002

N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity

Corinne Hackbarth; Dawn Chen; Jason G. Lewis; Kirk Clark; James B. Mangold; Jeffrey A. Cramer; Peter S. Margolis; Wen Wang; Jim Koehn; Charlotte Wu; S. Lopez; George Withers; Helen Gu; Elina Dunn; Raviraj Kulathila; Shi-Hao Pan; Wilma Porter; Jeff Jacobs; Joaquim Trias; Dinesh V. Patel; Beat Weidmann; Richard J. White; Zhengyu Yuan

ABSTRACT Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P1′ site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P1′ site. Compounds with MICs of ≤4 μg/ml against gram-positive and gram-negative pathogens, including Staphylococcusaureus, Streptococcuspneumoniae, and Haemophilusinfluenzae, have been identified. The concentrations needed to inhibit 50% of enzyme activity (IC50s) for Escherichiacoli Ni-PDF were ≤0.1 μM, demonstrating the specificity of the inhibitors. In addition, these compounds were very selective for PDF, with IC50s of consistently >200 μM for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzyme-inhibitor structure was determined at a resolution of 1.7 Å. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents.


Antimicrobial Agents and Chemotherapy | 2001

Resistance of Streptococcus pneumoniae to Deformylase Inhibitors Is Due to Mutations in defB

Peter S. Margolis; Corinne J. Hackbarth; Sara Lopez; Mita Maniar; Wen Wang; Zhengyu Yuan; Richard G. White; Joaquim Trias

ABSTRACT Resistance to peptide deformylase inhibitors in Escherichia coli or Staphylococcus aureus is due to inactivation of transformylase activity. Knockout experiments in Streptococcus pneumoniae R6x indicate that the transformylase (fmt) and deformylase (defB) genes are essential and that adef paralog (defA) is not. Actinonin-resistant mutants of S. pneumoniae ATCC 49619 harbor mutations indefB but not in fmt. Reintroduction of the mutated defB gene into wild-type S. pneumoniaeR6x recreates the resistance phenotype. The altered enzyme displays decreased sensitivity to actinonin.


Antimicrobial Agents and Chemotherapy | 2004

Peptide Deformylase Inhibitors as Antibacterial Agents: Identification of VRC3375, a Proline-3-Alkylsuccinyl Hydroxamate Derivative, by Using an Integrated Combinatorial and Medicinal Chemistry Approach

Dawn Chen; Corinne Hackbarth; Z. J. Ni; Charlotte Wu; Wen Wang; Rakesh K. Jain; Y. He; Kathryn Rene Bracken; Beat Weidmann; Dinesh V. Patel; Joaquim Trias; Richard J. White; Zhengyu Yuan

ABSTRACT Peptide deformylase (PDF), a metallohydrolase essential for bacterial growth, is an attractive target for use in the discovery of novel antibiotics. Focused chelator-based chemical libraries were constructed and screened for inhibition of enzymatic activity, inhibition of Staphylococcus aureus growth, and cytotoxicity. Positive compounds were selected based on the results of all three assays. VRC3375 [N-hydroxy-3-R-butyl-3-(2-S-(tert-butoxycarbonyl)-pyrrolidin-1-ylcarbonyl)propionamide] was identified as having the most favorable properties through an integrated combinatorial and medicinal chemistry effort. This compound is a potent PDF inhibitor with a Ki of 0.24 nM against the Escherichia coli Ni2+ enzyme, possesses activity against gram-positive and gram-negative bacterial pathogens, and has a low cytotoxicity. Mechanistic experiments demonstrate that the compound inhibits bacterial growth through PDF inhibition. Pharmacokinetic studies of this drug in mice indicate that VRC3375 is orally bioavailable and rapidly distributed among various tissues. VRC3375 has in vivo activity against S. aureus in a murine septicemia model, with 50% effective doses of 32, 17, and 21 mg/kg of body weight after dosing by intravenous (i.v.), subcutaneous (s.c.), and oral (p.o.) administration, respectively. In murine single-dose toxicity studies, no adverse effects were observed after dosing with more than 400 mg of VRC3375 per kg by i.v., p.o., or s.c. administration. The in vivo efficacy and low toxicity of VRC3375 suggest the potential for developing this class of compounds to be used in future antibacterial drugs.


Antimicrobial Agents and Chemotherapy | 2005

Role of the AcrAB-TolC Efflux Pump in Determining Susceptibility of Haemophilus influenzae to the Novel Peptide Deformylase Inhibitor LBM415

Charles R. Dean; Shubha Narayan; Denis M. Daigle; JoAnn Dzink-Fox; Xiaoling Puyang; Kathryn Rene Bracken; Karl Dean; Beat Weidmann; Zhengyu Yuan; Rakesh K. Jain; Neil S. Ryder

ABSTRACT Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 μg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 μg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 μg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.


Current Opinion in Pharmacology | 2003

Targeting metalloenzymes: a strategy that works.

Richard J. White; Peter S. Margolis; Joaquim Trias; Zhengyu Yuan

Faced with a wealth of antibacterial drug discovery targets as a result of bacterial genomics, we need to carefully select which ones to work with. Choosing bacterial metalloenzymes is one possible approach that can increase the probability of success. Metalloenzymes can be identified through specific motif searches of bacterial genomes. Current state-of-the-art medicinal chemistry allows for the design of inhibitor libraries targeting metalloenzymes and the efficient optimization of leads identified. This approach has been successfully applied to the discovery of in vivo active antibacterial agents that are inhibitors of bacterial peptide deformylase and UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. Other bacterial metalloenzymes are open to the same approach.


Bioorganic & Medicinal Chemistry Letters | 2003

N- and C-terminal modifications of negamycin

Bore G. Raju; Kathleen H. Mortell; Sampath-Kumar Anandan; Hardwin O'Dowd; Hongwu Gao; Marcela Gomez; Corinne J. Hackbarth; Charlotte Wu; Wen Wang; Zhengyu Yuan; Richard G. White; Joaquim Trias; Dinesh V. Patel

Negamycin 1 is a bactericidal antibiotic with activity against Gram-negative bacteria, and served as a template in an antibiotic discovery program. An orthogonally protected beta-amino acid derivative 3a was synthesized and used in parallel synthesis of negamycin derivatives on solid support. This advanced intermediate was also used for N- and C-terminal modifications using solution-phase methodologies. The N-terminal modifications have resulted in the identification of active analogues, whereas the C-terminal modifications resulted in complete loss of antibacterial activity. The N-methyl negamycin analogue, 19a, inhibits protein synthesis (IC(50)=2.3 microM), has antibacterial activity (Escherichia coli, MIC=16 microgram/mL), and is efficacious in an E. coli murine septicemia model (ED(50)=16.3mg/kg).


Bioorganic & Medicinal Chemistry Letters | 1998

Exploring structure-activity relationships around the phosphomannose isomerase inhibitor AF14049 via combinatorial synthesis

Ashok Bhandari; David G. Jones; John R. Schullek; Kham Vo; Caryn A. Schunk; Lisa L. Tamanaha; Dawn Chen; Zhengyu Yuan; Michael C. Needels; Mark A. Gallop

Phosphomannose Isomerase (PMI) has been shown by genetic methods to be an essential enzyme in fungal cell wall biosynthesis. The PMI inhibitor AF14049 was discovered as an unanticipated side product from high-throughput library screening against the enzyme from C, albicans. Solid-phase synthetic methods were developed and a series of libraries and discrete analogs synthesized to explore SAR around AF14049.


Drug Metabolism and Disposition | 2015

Metabolism of MRX-I, a Novel Antibacterial Oxazolidinone, in Humans: the Oxidative Ring-opening of 2,3-Dihydropyridin-4-one Catalyzed by Non-P450 Enzymes

Jian Meng; Dafang Zhong; Liang Li; Zhengyu Yuan; Hong Yuan; Cen Xie; Jialan Zhou; Chen Li; Mikhail Fedorovich Gordeev; Jinqian Liu; Xiaoyan Chen

MRX-I is an analog of linezolid containing a 2,3-dihydropyridin-4-one (DHPO) ring rather than a morpholine ring. Our objectives were to characterize the major metabolic pathways of MRX-I in humans and clarify the mechanism underlying the oxidative ring opening of DHPO. After an oral dose of MRX-I (600 mg), nine metabolites were identified in humans. The principal metabolic pathway proposed involved the DHPO ring opening, generating the main metabolites in the plasma and urine: the hydroxyethyl amino propionic acid metabolite MRX445-1 and the carboxymethyl amino propionic acid metabolite MRX459. An in vitro phenotyping study demonstrated that multiple non–cytochrome P450 enzymes are involved in the formation of MRX445-1 and MRX459, including flavin-containing monooxygenase 5, short-chain dehydrogenase/reductase, aldehyde ketone reductase, and aldehyde dehydrogenase (ALDH). H218O experiments revealed that two 18O atoms are incorporated into MRX445-1, one in the carboxyethyl group and the other in the hydroxyl group, and three 18O atoms are incorporated into MRX459, two in the carboxymethyl group and one in the hydroxyl group. Based on these results, the mechanism proposed for the DHPO ring opening involves the metabolism of MRX-I via FMO5-mediated Baeyer-Villiger oxidation to an enol lactone, hydrolysis to an enol, and enol-aldehyde tautomerism to an aldehyde. The aldehyde is reduced by short-chain dehydrogenase/reductase, aldehyde ketone reductase, ALDH to MRX445-1, or oxidized by ALDH to MRX459. Our study suggests that few clinical adverse drug-drug interactions should be anticipated between MRX-I and cytochrome P450 inhibitors or inducers.

Collaboration


Dive into the Zhengyu Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge