Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengzhi Zhang is active.

Publication


Featured researches published by Zhengzhi Zhang.


Molecular Genetics and Genomics | 2006

Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations

Zhengqiang Ma; Dongmei Zhao; Caiqin Zhang; Zhengzhi Zhang; Shulin Xue; Feng Lin; Zhongxin Kong; Dagang Tian; Qingyun Luo

Kernel number per spike is one of the most important yield components of wheat. To map QTLs related to kernel number including spike length (SPL), spikelet number per spike (SPN), fertile spikelet number (FSPN), sterile spikelet number (SSPN) and compactness, and to characterize the inheritance modes of the QTLs and two-locus interactions, 136 recombinant inbred lines (RILs) derived from ‘Nanda2419’ x ‘Wangshuibai’ and an immortalized F2 population (IF2) generated by randomly permutated intermating of these RILs were investigated. QTL mapping made use of the previously constructed over 3300 cM linkage map of the RIL population. Three, five, two, two and six chromosome regions were identified, respectively, for their association with SPL, SPN, FSPN, SSPN, and compactness in at least two of the three environments examined. All compactness QTLs but one shared the respective intervals of QSpn.nau-5A and the SPL QTLs. Xcfd46–Xwmc702 interval on chromosome 7D was related to all traits but SSPN and had consistently the largest effects. The fact that not all the compactness QTL intervals were related to both SPL and SPN indicates that compactness is regulated by different mechanisms. Interval coincidence between QTLs of SPL and SPN and between QTLs of FSPN and SSPN was minimal. For all the traits, favorable alleles exist in both parents. Inheritance modes from additiveness to overdominance of the QTLs were revealed and two-locus interactions were detected, implying that the traits studied are under complex genetic control. The results could contribute to wheat yield improvement and better use of Wangshuibai and Nanda2419 the two special germplasms in wheat breeding program.


Plant Physiology | 2008

Wheat Cryptochromes: Subcellular Localization and Involvement in Photomorphogenesis and Osmotic Stress Responses

Pei Xu; Yang Xiang; Huilan Zhu; Haibin Xu; Zhengzhi Zhang; Caiqin Zhang; Lixia Zhang; Zhengqiang Ma

Cryptochromes (CRYs) are blue light receptors important for plant growth and development. Comprehensive information on monocot CRYs is currently only available for rice (Oryza sativa). We report here the molecular and functional characterization of two CRY genes, TaCRY1a and TaCRY2, from the monocot wheat (Triticum aestivum). The expression of TaCRY1a was most abundant in seedling leaves and barely detected in roots and germinating embryos under normal growth conditions. The expression of TaCRY2 in germinating embryos was equivalent to that in leaves and much higher than the TaCRY1a counterpart. Transition from dark to light slightly affected the expression of TaCRY1a and TaCRY2 in leaves, and red light produced a stronger induction of TaCRY1a. Treatment of seedlings with high salt, polyethylene glycol, and abscisic acid (ABA) up-regulated TaCRY2 in roots and germinating embryos. TaCRY1a displays a light-responsive nucleocytoplasmic shuttling pattern similar to that of Arabidopsis (Arabidopsis thaliana) CRY1, contains nuclear localization domains in both the N and C termini, and includes information for nuclear export in its N-terminal domain. TaCRY2 was localized to the nucleus in the dark. Expression of TaCRY1a-green fluorescent protein or TaCRY2-green fluorescent protein in Arabidopsis conferred a shorter hypocotyl phenotype under blue light. These transgenic Arabidopsis plants showed higher sensitivity to high-salt, osmotic stress, and ABA treatment during germination and postgermination development, and they displayed altered expression of stress/ABA-responsive genes. The primary root growth in transgenic seedlings was less tolerant of ABA. These observations indicate that TaCRY1 and TaCRY2 might be involved in the ABA signaling pathway in addition to their role in primary blue light signal transduction.


Plant Science | 2014

Classification and expression diversification of wheat dehydrin genes.

Yuezhi Wang; Haibin Xu; Huilan Zhu; Ye Tao; Guangxiang Zhang; Lixia Zhang; Caiqin Zhang; Zhengzhi Zhang; Zhengqiang Ma

Dehydrins (DHNs) are late embryonic abundant proteins characterized by the dehydrin domains that are involved in plant abiotic stress tolerance. In this study, fifty-four wheat DHN unigenes were identified in the expressed sequence tags database. These genes encode seven types of dehydrins (KS, SK3, YSK2, Y2SK2, Kn, Y2SK3, and YSK3) and separate in 32 homologous clusters. The gene amplification differed among the dehydrin types, and members of the YSK2- and Kn-type DHNs are more numerous in wheat than in other cereals. The relative expression of all of these DHN clusters was analyzed using an in silico method in seven tissue types (i.e. normal growing shoots, roots, and reproductive tissues; developing and germinating seeds; drought- and cold-stressed shoots) as well as semi-quantitative reverse transcription polymerase chain reaction in seedling leaves and roots treated by dehydration, cold, and salt, respectively. The role of the ABA pathway in wheat DHN expression regulation was analyzed. Transcripts of certain types of DHNs accumulated specifically according to tissue type and treatment, which suggests their differentiated roles in wheat abiotic stress tolerance.


Journal of Genetics and Genomics | 2009

Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat

Yuezhi Wang; Haibin Xu; Guangxiang Zhang; Huilan Zhu; Lixia Zhang; Zhengzhi Zhang; Caiqin Zhang; Zhengqiang Ma

Vacuolar H(+)-translocating pyrophosphatase (V-PPase) is a key enzyme related to plant growth as well as abiotic stress tolerance. In this work, wheat V-PPase genes TaVP1, TaVP2 and TaVP3 were identified. TaVP1 and TaVP2 are more similar to each other than to TaVP3. Their deduced polypeptide sequences preserve the topological structure and essential residues of V-PPases. Phylogenetic studies suggested that monocot plants, at least monocot grasses, have three VP paralogs. TaVP3 transcripts were only detected in developing seeds, and no TaVP2 transcripts were found in germinating seeds. TaVP2 was mainly expressed in shoot tissues and down-regulated in leaves under dehydration. Its expression was up-regulated in roots under high salinity. TaVP1 was relatively more ubiquitously and evenly expressed than TaVP2. Its expression level in roots was highest among the tissues examined, and was inducible by salinity stress. These results indicated that the V-PPase gene paralogs in wheat are differentially regulated spatially and in response to dehydration and salinity stresses.


Molecular Breeding | 2010

Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat

Shulin Xue; Guoqiang Li; Haiyan Jia; Feng Lin; Yong Cao; Feng Xu; Mingzhi Tang; Yao Wang; Xinyi Wu; Zhengzhi Zhang; Lixia Zhang; Zhongxin Kong; Zhengqiang Ma

Fusarium head blight or scab resistance in wheat is a complex quantitative trait affected greatly by environments. Therefore, the quantitative trait loci (QTL) for scab resistance found in mapping projects require validation to be effectively utilized in breeding programs. In this study, by employing both forward and background selections with the help of molecular markers, near-isogenic lines (NILs) for scab resistance QTLs Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B and Qfhi.nau-5A, three of which originating in scab resistance germplasm Wangshuibai, were developed with the elite line Miangyang 99-323 as the recurrent parent. During the process of backcross, selection was based solely on marker genotypes of the target regions, and on recipient genome recovery rate in BC2F1 and BC3F1. All the identified BC3F1 plants with the target QTL regions have more than 94% recipient genome composition (RGC), and out of four to five of them a plant with over 97% RGC were obtained in each backcross combination. Compared with Mianyang 99-323, the Qfhs.nau-3B NIL showed much better resistance to disease spread within spikes, the Qfhi.nau-4B and Qfhi.nau-5A NILs showed much better resistance to initial infection, and the Qfh.nau-2B NIL showed improvement in both types of resistance. These results were consistent with findings in the previous QTL mapping studies. Morphologically and agronomically these NILs were similar to Mianyang 99-323 except that Qfhi.nau-4B NIL was taller and had a longer spike, and Qfhi.nau-5A NIL had narrower leaves. These results demonstrated the feasibility of marker-assisted utilization of scab resistance QTLs.


Plant Molecular Biology Reporter | 2009

Highly Conserved UFD1 Proteins Among Eukaryotes Exhibit Considerable C-Terminus Diversity in Different Taxa

Lingzhu Wei; Ye Tao; Haiyan Jia; Lixia Zhang; Pei Xu; Yuezhi Wang; Zhengzhi Zhang; Caiqin Zhang; Zhengqiang Ma

The UFD1 protein is an important ubiquitin recognition component in the ubiquitin-mediated degradation pathway. To investigate the conservation of UFD1 genes among eukaryotes and their differentiation, two UFD1 paralogs from wheat were identified and mapped to homoeologous chromosome groups 6 and 2, respectively. TaUFD1a-6B and TaUFD1b-2D were cloned, and both genes consist of eight introns and of the same intron phases. These genes were compared with those in Arabidopsis, rice, polar, yeast, and mammals for their sequence, chromosome organization, and primary protein structure. The sequence structure, especially those corresponding to the fourth, fifth, and sixth exons of UFD1 genes, is highly conserved across these taxa. However, unlike yeast and mammals having a single UFD1 gene, higher angiosperm species have two ancient UFD1 paralogs. Besides the evolutionarily conserved ubiquitin-binding domain at the N-terminus, plant UFD1 proteins have three conserved C-terminal motifs. Motif I, near the UFD1 domain, displays a high level of similarity to the mammalian p97-binding site, and motif III is likely responsible for endoplasmic reticulum membrane retention. TaUFD1a-6B and TaUFD1b-2D are ubiquitously expressed in different plant tissues. A green fluorescent protein-transient expression assay in epidermal cells of onion demonstrated that TaUFD1 proteins primarily accumulate in the nucleus.


Acta Agronomica Sinica | 2008

Mapping QTLs Associated with Resistance to Fusarium Head Blight Using an 'Immortalized F 2 ' Population: Mapping QTLs Associated with Resistance to Fusarium Head Blight Using an 'Immortalized F 2 ' Population

Dagang Tian; Feng Lin; Caiqin Zhang; Zhengzhi Zhang; Shulin Xue; Yong Cao; Chun-Jun Li; Zheng-Qiang Ma

为了研究抗赤霉病侵染性的遗传, 利用感赤霉病品种南大2419和抗赤霉病品种望水白杂交单粒传获得的重组自交系群体132个株系间的随机配对组合, 构建了一个包含198个株系的“永久 F2”群体。通过两年抗侵染田间试验和QTL作图, 定位了6个抗侵染QTL, 其中抗性等位位点源于望水白的Qfhi.nau-4B和Qfhi.nau-5A以及源于南大2419的Qfhi.nau-2B的效应较为稳定。Qfhi.nau-4B和 Qfhi.nau-5A的效应较大且以加性效应为主, 前者存在部分显性基因效应。此外, 还检测到4对显著的互作位点。这些结果进一步说明赤霉病抗性遗传的复杂性, 同时也表明在利用望水白进行抗赤霉病育种时早代选择抗侵染性是可行的。


Theoretical and Applied Genetics | 2008

A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags

Shulin Xue; Zhengzhi Zhang; Feng Lin; Zhongxin Kong; Yong Cao; Chunjun Li; Hongying Yi; Mingfeng Mei; Huilan Zhu; Jizhong Wu; Haibin Xu; Dongmei Zhao; Dagang Tian; Caiqin Zhang; Zhengqiang Ma


Theoretical and Applied Genetics | 2006

Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions.

Guoqi Yao; Jiangli Zhang; Lili Yang; Hongxing Xu; Yumei Jiang; Li Xiong; Caiqin Zhang; Zhengzhi Zhang; Zhengqiang Ma; Mark E. Sorrells


Plant Pathology | 2006

Molecular detection of Phytophthora capsici in infected plant tissues, soil and water

Zhengzhi Zhang; Ying Li; Hongjie Fan; Yujian Wang; X. B. Zheng

Collaboration


Dive into the Zhengzhi Zhang's collaboration.

Top Co-Authors

Avatar

Zhengqiang Ma

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Caiqin Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lixia Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shulin Xue

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Feng Lin

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huilan Zhu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haibin Xu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Cao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhongxin Kong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Jia

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge