Zhenhong Nan
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenhong Nan.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Tao Zu; Brian B. Gibbens; Noelle S. Doty; Mário Gomes-Pereira; Aline Huguet; Matthew D. Stone; Jamie M. Margolis; Mark Peterson; Todd W. Markowski; Melissa Ingram; Zhenhong Nan; Colleen L. Forster; Walter C. Low; Benedikt Schoser; Nikunj V. Somia; H. Brent Clark; Stephen C. Schmechel; Peter B. Bitterman; Geneviève Gourdon; Maurice S. Swanson; Melinda L. Moseley; Laura P.W. Ranum
Trinucleotide expansions cause disease by both protein- and RNA-mediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Cecilia M. P. Rodrigues; Susana Solá; Zhenhong Nan; Rui E. Castro; Paulo S. Ribeiro; Walter C. Low; Clifford J. Steer
Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Intracerebral hemorrhage (ICH) is a devastating acute neurological disorder, without effective treatment, in which a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we evaluated whether TUDCA can reduce brain injury and improve neurological function after ICH in rats. Administration of TUDCA before or up to 6 h after stereotaxic collagenase injection into the striatum reduced lesion volumes at 2 days by as much as 50%. Apoptosis was ≈50% decreased in the area immediately surrounding the hematoma and was associated with a similar inhibition of caspase activity. These changes were also associated with improved neurobehavioral deficits as assessed by rotational asymmetry, limb placement, and stepping ability. Furthermore, TUDCA treatment modulated expression of certain Bcl-2 family members, as well as NF-κB activity. In addition to its protective action at the mitochondrial membrane, TUDCA also activated the Akt-1/protein kinase Bα survival pathway and induced Bad phosphorylation at Ser-136. In conclusion, reduction of brain injury underlies the wide-range neuroprotective effects of TUDCA after ICH. Thus, given its clinical safety, TUDCA may provide a potentially useful treatment in patients with hemorrhagic stroke and perhaps other acute brain injuries associated with cell death by apoptosis.
Annals of the New York Academy of Sciences | 2005
Zhenhong Nan; Andrew W. Grande; Cyndy D. Sanberg; Paul R. Sanberg; Walter C. Low
Abstract: Umbilical cord blood is a rich source of hematopoietic stem cells. It is routinely used for transplantation to repopulate cells of the immune system. Recent studies, however, have demonstrated that intravenous infusions of umbilical cord blood can ameliorate neurologic deficits associated with ischemic brain injury in rodents. Moreover, the infused cells penetrate into the parenchyma of the brain and adopt phenotypic characteristics typical of neural cells. In the present study we tested the hypothesis that the administration of umbilical cord blood can also diminish neurologic deficits caused by intracerebral hemorrhage (ICH). Intracerebral hemorrhage is a major cause of morbidity and mortality, and at the present time there are no adequate therapies that can minimize the consequences of this cerebrovascular event. ICH was induced in rats by intrastriatal injections of collagenase to cause bleeding in the striatum. Twenty‐four hours after the induction of ICH rats received intravenous saphenous vein infusions of human umbilical cord blood (2.4 × 106 to 3.2 to 106 cells). Animals were evaluated using a battery of tests at day 1 after ICH, but before the administration of umbilical cord blood, and at days 7, and 14 after ICH (days 6 and 13, respectively, after cord blood administration). These tests included a neurological severity test, a stepping test, and an elevated body‐swing test. Animals with umbilical cord blood infusions exhibited significant improvements in (1) the neurologic severity test at 6 and 13 days after cord blood infusion in comparison to saline‐treated animals (P < 0.05); (2) the stepping test at day 6 (P < 0.05); and (3) the elevated body‐swing test at day 13 (P< 0.05). These results demonstrate that the administration of human umbilical cord blood cells can ameliorate neurologic deficits associated with intracerebral hemorrhage.
Neurobiology of Disease | 2011
Daniel A. Wolf; Aw Lenander; Zhenhong Nan; Lalitha R. Belur; Chester B. Whitley; Pankaj Gupta; Walter C. Low; R. Scott McIvor
The mucopolysaccharidoses (MPSs) are a group of 11 storage diseases caused by disruptions in glycosaminoglycan (GAG) catabolism, leading to their accumulation in lysosomes. Resultant multisystemic disease is manifested by growth delay, hepatosplenomegaly, skeletal dysplasias, cardiopulmonary obstruction, and, in severe MPS I, II, III, and VII, progressive neurocognitive decline. Some MPSs are treated by allogeneic hematopoietic stem cell transplantation (HSCT) and/or recombinant enzyme replacement therapy (ERT), but effectiveness is limited by central nervous system (CNS) access across the blood-brain barrier. To provide a high level of gene product to the CNS, we tested neonatal intracerebroventricular (ICV) infusion of an adeno-associated virus (AAV) serotype 8 vector transducing the human α-L-iduronidase gene in MPS I mice. Supranormal levels of iduronidase activity in the brain (including 40× normal levels in the hippocampus) were associated with transduction of neurons in motor and limbic areas identifiable by immunofluorescence staining. The treatment prevented accumulation of GAG and GM3 ganglioside storage materials and emergence of neurocognitive dysfunction in a modified Morris water maze test. The results suggest the potential of improved outcome for MPSs and other neurological diseases when a high level of gene expression can be achieved by direct, early administration of vector to the CNS.
Molecular Genetics and Metabolism | 2012
Daniel A. Wolf; Leah R. Hanson; Elena L. Aronovich; Zhenhong Nan; Walter C. Low; William H. Frey; R. Scott McIvor
Here we provide the first evidence that therapeutic levels of a lysosomal enzyme can bypass the blood-brain barrier following intranasal administration. α-L-iduronidase (IDUA) activity was detected throughout the brains of IDUA-deficient mice following a single intranasal treatment with concentrated Aldurazyme® (laronidase) and was also detected after intranasal treatment with an adeno-associated virus (AAV) vector expressing human IDUA. These results suggest that intranasal routes of delivery may be efficacious in the treatment of lysosomal storage disorders.
Brain Research Bulletin | 2007
Mayra F. Garcia-Rivera; Leah E. Colvin-Wanshura; Matthew S. Nelson; Zhenhong Nan; Shaukat A. Khan; Tyson Rogers; Indrani Maitra; Walter C. Low; Pankaj Gupta
Mucopolysaccharidosis type I (MPS-I or Hurler syndrome) is an inherited deficiency of the lysosomal glycosaminoglycan (GAG)-degrading enzyme alpha-l-iduronidase (IDUA) in which GAG accumulation causes progressive multi-system dysfunction and death. Early allogeneic hematopoietic stem cell transplantation (HSCT) ameliorates clinical features and extends life but is not available to all patients, and inadequately corrects its most devastating features including mental retardation and skeletal deformities. To test novel therapies, we characterized an immunodeficient MPS-I mouse model less likely to develop immune reactions to transplanted human or gene-corrected cells or secreted IDUA. In the liver, spleen, heart, lung, kidney and brain of NOD/SCID/MPS-I mice IDUA was undetectable, and reduced to half in heterozygotes. MPS-I mice developed marked GAG accumulation (3-38-fold) in these organs. Neuropathological examination showed GM(3) ganglioside accumulation in the striatum, cerebral peduncles, cerebellum and ventral brainstem of MPS-I mice. Urinary GAG excretion (6.5-fold higher in MPS-I mice) provided a non-invasive and reliable method suitable for serially following the biochemical efficacy of therapeutic interventions. We identified and validated using rigorous biostatistical methods, a highly reproducible method for evaluating sensorimotor function and motor skills development. This Rotarod test revealed marked abnormalities in sensorimotor integration involving the cerebellum, striatum, proprioceptive pathways, motor cortex, and in acquisition of motor coordination. NOD/SCID/MPS-I mice exhibit many of the clinical, skeletal, pathological and behavioral abnormalities of human MPS-I, and provide an extremely suitable animal model for assessing the systemic and neurological effects of human stem cell transplantation and gene therapeutic approaches, using the above techniques to measure efficacy.
Cell Transplantation | 2016
Laura Hocum Stone; Feng Xiao; Jessica H. Rotschafer; Zhenhong Nan; Mario Juliano; Cyndy D. Sanberg; Paul R. Sanberg; Nicole Kuzmin-Nichols; Andrew W. Grande; Maxim C.-J. Cheeran; Walter C. Low
Despite the high prevalence and devastating outcome, there remain a few options for treatment of ischemic stroke. Currently available treatments are limited by a short time window for treatment and marginal efficacy when used. We have tested a human umbilical cord blood-derived stem cell line that has been shown to result in a significant reduction in stroke infarct volume as well as improved functional recovery following stroke in the rat. In the present study we address the mechanism of action and compared the therapeutic efficacy of high- versus low-passage nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs). Using the middle cerebral arterial occlusion (MCAo) model of stroke in Sprague–Dawley rats, we administered nh-UCBSC by intravenous (IV) injection 2 days following stroke induction. These human cells were injected into rats without any immune suppression, and no adverse reactions were detected. Both behavioral and histological analyses have shown that the administration of these cells reduces the infarct volume by 50% as well as improves the functional outcome of these rats following stroke for both high- and low-passaged nh-UCBSCs. Flow cytometry analysis of immune cells present in the brains of normal rats, rats with ischemic brain injury, and ischemic animals with nh-UCBSC treatment confirmed infiltration of macrophages and T cells consequent to ischemia and reduction to normal levels with nh-UCBSC treatment. Flow cytometry also revealed a restoration of normal levels of microglia in the brain following treatment. These data suggest that nh-UCBSCs may act by inhibiting immune cell migration into the brain from the periphery and possibly by inhibition of immune cell activation within the brain. nh-UCBSCs exhibit great potential for treatment of stroke, including the fact that they are associated with an increased therapeutic time window, no known ill-effects, and that they can be expanded to high numbers for, and stored for, treatment.
Neurosurgery | 2014
Christopher G. Janson; Liudmila Romanova; Paola Leone; Zhenhong Nan; Lalitha R. Belur; R. Scott McIvor; Walter C. Low
BACKGROUND Hurler disease (mucopolysaccharidosis type I [MPS-I]) is an inherited metabolic disorder characterized by deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Currently, the only therapies for MPS-I, enzyme replacement and hematopoietic stem cell transplantation, are generally ineffective for central nervous system manifestations. OBJECTIVE To test whether brain-targeted gene therapy with recombinant adeno-associated virus (rAAV5)-IDUA vectors in an MPS-I transgenic mouse model would reverse the pathological hallmarks. METHODS Gene therapy approaches were compared using intraventricular or endovascular delivery with a marker (rAAV5-green fluorescent protein) or therapeutic (rAAV5-IDUA) vector. To improve the efficiency of brain delivery, we tested different applications of hyperosmolar mannitol to disrupt the blood-brain barrier or ependymal-brain interface. RESULTS Intraventricular delivery of 1 × 10 viral particles of rAAV5-IDUA with systemic 5 g/kg mannitol co-administration resulted in IDUA expression throughout the brain, with global enzyme activity >200% of the baseline level in age-matched, wild-type mice. Endovascular delivery of 1 × 10 viral particles of rAAV5-IDUA to the carotid artery with 29.1% mannitol blood-brain barrier disruption resulted in mainly ipsilateral brain IDUA expression and ipsilateral brain enzyme activity 42% of that in wild-type mice. Quantitative assays for glycosaminoglycans showed a significant decrease in both hemispheres after intraventricular delivery and in the ipsilateral hemisphere after endovascular delivery compared with untreated MPS-I mice. Immunohistochemistry for ganglioside GM3, another disease marker, showed reversal of neuronal inclusions in areas with IDUA co-expression in both delivery methods. CONCLUSION Physiologically relevant biochemical correction is possible with neurosurgical or endovascular gene therapy approaches for MPS-I. Intraventricular or endovascular delivery of rAAV5-IDUA was effective in reversing brain pathology, but in the latter method, effects were limited to the ipsilateral hemisphere.
Cell Transplantation | 2012
Zhenhong Nan; Laurie L. Shekels; Oleg Ryabinin; Carrie Evavold; Matthew S. Nelson; Shaukat A. Khan; Robert Deans; Robert W. Mays; Walter C. Low; Pankaj Gupta
Mucopolysaccharidosis type I (MPS-I; Hurler syndrome) is an inborn error of metabolism caused by lack of the functional lysosomal glycosaminoglycan (GAG)-degrading enzyme α-l-iduronidase (IDUA). Without treatment, the resulting GAG accumulation causes multisystem dysfunction and death within the first decade. Current treatments include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy. HSCT ameliorates clinical features and extends life but is not available to all patients, and inadequately corrects the most devastating features of the disease including mental retardation and skeletal deformities. Recent developments suggest that stem cells can be used to deliver needed enzymes to the central nervous system. To test this concept, we transplanted bone marrow-derived normal adult human MultiStem® cells into the cerebral lateral ventricles of immunodeficient MPS-I neonatal mice. Transplanted cells and human-specific DNA were detected in the hippocampal formation, striatum, and other areas of the central nervous system. Brain tissue assays revealed significant long-term decrease in GAG levels in the hippocampus and striatum. Sensorimotor testing 6 months after transplantation demonstrated significantly improved rotarod performance of transplanted mice in comparison to nontransplanted and sham-transplanted control animals. These results suggest that a single injection of MultiStem cells into the cerebral ventricles of neonatal MPS-I mice induces sustained reduction in GAG accumulation within the brain, and modest long-term improvement in sensorimotor function.
Bone Marrow Transplantation | 2012
Daniel A. Wolf; Aw Lenander; Zhenhong Nan; Elizabeth Braunlin; Kelly M. Podetz-Pedersen; Chester B. Whitley; Pankaj Gupta; Walter C. Low; Rs McIvor
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive inherited disease caused by deficiency of the glycosidase α-L-iduronidase (IDUA). Deficiency of IDUA leads to lysosomal accumulation of glycosaminoglycans (GAG) heparan and dermatan sulfate and associated multi-systemic disease, the most severe form of which is known as Hurler syndrome. Since 1981, the treatment of Hurler patients has often included allogeneic BMT from a matched donor. However, mouse models of the disease were not developed until 1997. To further characterize the MPS-I mouse model and to study the effectiveness of BMT in these animals, we engrafted a cohort (n=33) of 4–8-week-old Idua−/− animals with high levels (88.4±10.3%) of wild-type donor marrow. Engrafted animals displayed an increased lifespan, preserved cardiac function, partially restored IDUA activity in peripheral organs and decreased GAG accumulation in both peripheral organs and in the brain. However, levels of GAG and GM3 ganglioside in the brain remained elevated in comparison to unaffected animals. As these results are similar to those observed in Hurler patients following BMT, this murine-transplantation model can be used to evaluate the effects of novel, more effective methods of delivering IDUA to the brain as an adjunct to BMT.