Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenlong Li is active.

Publication


Featured researches published by Zhenlong Li.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Organization, dynamics, and segregation of Ras nanoclusters in membrane domains

Lorant Janosi; Zhenlong Li; John F. Hancock; Alemayehu A. Gorfe

Recent experiments have shown that membrane-bound Ras proteins form transient, nanoscale signaling platforms that play a crucial role in high-fidelity signal transmission. However, a detailed characterization of these dynamic proteolipid substructures by high-resolution experimental techniques remains elusive. Here we use extensive semiatomic simulations to reveal the molecular basis for the formation and domain-specific distribution of Ras nanoclusters. As model systems, we chose the triply lipidated membrane targeting motif of H-ras (tH) and a large bilayer made up of di16∶0-PC (DPPC), di18∶2-PC (DLiPC), and cholesterol. We found that 4–10 tH molecules assemble into clusters that undergo molecular exchange in the sub-μs to μs time scale, depending on the simulation temperature and hence the stability of lipid domains. Driven by the opposite preference of tH palmitoyls and farnesyl for ordered and disordered membrane domains, clustered tH molecules segregate to the boundary of lipid domains. Additionally, a systematic analysis of depalmitoylated and defarnesylated tH variants allowed us to decipher the role of individual lipid modifications in domain-specific nanocluster localization and thereby explain why homologous Ras isoforms form nonoverlapping nanoclusters. Moreover, the localization of tH nanoclusters at domain boundaries resulted in a significantly lower line tension and increased membrane curvature. Taken together, these results provide a unique mechanistic insight into how protein assembly promoted by lipid-modification modulates bilayer shape to generate functional signaling platforms.


Journal of the American Chemical Society | 2012

Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition.

Zhenlong Li; Lorant Janosi; Alemayehu A. Gorfe

Experiments have shown that homologous Ras proteins containing different lipid modification, which is required for membrane binding, form nonoverlapping nanoclusters on the plasma membrane. However, the physical basis for clustering and lateral organization remains poorly understood. We have begun to tackle this issue using coarse-grained molecular dynamics simulations of the H-ras lipid anchor (tH), a triply lipid-modified heptapeptide embedded in a domain-forming mixed lipid bilayer [Janosi L. et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8097]. Here we use the same simulation approach to investigate the effect of peptide concentration and bilayer composition on the clustering and lateral distribution of tH. We found no major difference in the clustering behavior of tH above a certain concentration. However, the simulations predict the existence of a critical concentration below which tH does not form nanoclusters. Moreover, our data demonstrate that cholesterol enhances the stability of tH nanoclusters but is not required for their formation. Finally, analyses of peptide distributions and partition free energies allowed us to quantitatively describe how clustering facilitates the accumulation of tH at the interface between ordered and disordered domains of the simulated bilayer systems. These thermodynamic insights represent some of the key elements for a comprehensive understanding of the molecular basis for the formation and stability of Ras signaling platforms.


Soft Matter | 2013

Deformation of a two-domain lipid bilayer due to asymmetric insertion of lipid-modified Ras peptides

Zhenlong Li; Alemayehu A. Gorfe

Ras proteins are attached to the inner leaflet of the plasma membrane via a lipid-modified anchor. Membrane-bound Ras proteins laterally segregate into nanoscale signaling platforms called nanoclusters. It has been shown that the membrane domain preference of Ras nanoclusters varies with the nature of lipidation but their effect on the membrane has not been well understood. To investigate the effect of Ras insertion on membrane structure, we carried out numerous coarse-grained molecular dynamics (CGMD) simulations on a two-domain DPPC/DLiPC/cholesterol lipid bilayer in which different number and type of H-ras peptides were attached on one side. We have shown previously that this lipid mixture forms co-existing liquid-ordered/liquid-disordered (L o /L d ) domains and that different H-ras peptides form clusters that variously accumulate at the L o /L d regions or the boundary between them. Here we show that asymmetric insertion of each of these peptides induces a vertical relative displacement of the domains and deforms the bilayer, with the domain boundary serving as the center of deformation. The extent of the deformation, however, varies with the type and number of lipid modification. This is because the number and type of the Ras lipid tails determines the degree to which the stress caused by asymmetric peptide insertion is relieved by inter-leaflet cholesterol transfer and lipid tilt. In addition, we have characterized the mechanism of bilayer deformation based on the collective effect of the Ras peptides on inter-leaflet surface area, pressure profile and line tension differences. This allowed us to elucidate how Ras lipid modification affects membrane geometry and how a two-domain bilayer adjusts its shape through boundary deformation. The result contributes to a better understanding of Ras signaling platforms and highlights some of the mechanisms by which a multi-domain membrane responds to external perturbation.


Biophysical Journal | 2015

Reversible Effects of Peptide Concentration and Lipid Composition on H-Ras Lipid Anchor Clustering.

Xubo Lin; Zhenlong Li; Alemayehu A. Gorfe

Dynamic clusters of lipid-anchored Ras proteins are important for high-fidelity signal transduction in cells. The average size of Ras nanoclusters was reported to be independent of protein expression levels, and cholesterol depletion is commonly used to test the raft-preference of nanoclusters. However, whether protein concentration and membrane domain stability affect Ras clustering in a reversible manner is not well understood. We used coarse-grained molecular dynamics simulations to examine the reversibility of the effects of peptide and cholesterol concentrations as well as a lipid domain-perturbing nanoparticle (C60) on the dynamics and stability of H-Ras lipid-anchor nanoclusters. By comparing results from these simulations with previous observations from the literature, we show that effects of peptide/cholesterol concentrations on the dynamics and stability of H-Ras peptide nanoclusters are reversible. Our results also suggest a correlation between the stabilities of lipid domains and Ras nanoclusters, which is supported by our finding that C60 penetrates into the liquid-disordered domain of the bilayer, destabilizing lipid domains and thereby the stability of the nanoclusters.


Small GTPases | 2012

What drives the clustering of membrane-bound Ras?

Zhenlong Li; Alemayehu A. Gorfe

The dynamic assembly and lateral organization of Ras proteins on the plasma membrane has been the focus of much research in recent years. It has been shown that different isoforms of Ras proteins share a nearly identical catalytic domain, yet form distinct and non-overlapping nanoclusters. Though this difference in the clustering behavior of Ras proteins has been attributed largely to their different C terminal lipid modification, its precise physical basis was not determined. Recently, we used computer simulations to study the mechanism by which the triply lipid-modified membrane-anchor of H-ras, and its partially de-lipidated variants, form nanoclusters in a model lipid bilayer. We found that the specific nature of the lipid modification is less important for cluster formation, but plays a key role for the domain-specific distribution of the nanoclusters. Here we provide additional details on the interplay between bilayer structure perturbation and peptide-peptide association that provide the physical driving force for clustering. We present some thoughts about how enthalpic (i.e., interaction) and entropic effects might regulate nanocluster size and stability.


Journal of Physical Chemistry B | 2014

Modulation of a small two-domain lipid vesicle by linactants.

Zhenlong Li; Alemayehu A. Gorfe

Linactants, molecules that preferentially localize at the boundary of lipid membrane domains, are attracting considerable attention in recent years due to the recognition that they might regulate lipid-phase separation and thereby modulate membrane morphology. Recent studies have also shown that clustering of some line active agents enhances their ability to modulate membrane curvature. However, the molecular origin of this phenomenon, and the degree to which it impacts biological membranes, remains poorly understood. In this work, we have investigated how linactants induce shape change in multidomain small unilamallar vesicles (SUVs) using extensive dissipative particle dynamics simulations. The linactant was modeled as a two-tailed hybrid lipid with the two tails differing in preference for different lipid domains. We found that addition of a small amount of linactants (∼1%) to a two-domain vesicle leads to substantial reduction in the line tension and neck curvature at the domain boundary. Using cross-linking as a surrogate for clustering, we further show that linactant clusters substantially enhance the boundary preference and therefore the reduction in neck curvature. Moreover, on the basis of analyses of the corresponding changes in the membrane energetics, we highlight how linactants might stabilize nanoscale domains. These results have important implications for the potential existence and physical explanations of nanosized domains in biological membranes.


Nanoscale | 2015

Receptor-mediated membrane adhesion of lipid–polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations

Zhenlong Li; Alemayehu A. Gorfe


Biophysical Journal | 2013

A Computational Study of H-Ras Nanoclusters in Membrane Domains

Hualin Li; Zhenlong Li; Alemayehu A. Gorfe


Biophysical Journal | 2012

The Molecular Basis of Cluster Formation by Membrane-Bound Lipidated Ras

Alemayehu A. Gorfe; Zhenlong Li; Lorant Janosi


Biophysical Journal | 2012

A Molecular Dynamics Study of Ras Clustering in Membrane Domains

Hualin Li; Zhenlong Li; Alemayehu A. Gorfe

Collaboration


Dive into the Zhenlong Li's collaboration.

Top Co-Authors

Avatar

Alemayehu A. Gorfe

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Lorant Janosi

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hualin Li

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

John F. Hancock

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Xubo Lin

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge