Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenmin Hong is active.

Publication


Featured researches published by Zhenmin Hong.


Chemical Reviews | 2012

UV Resonance Raman Investigations of Peptide and Protein Structure and Dynamics

Sulayman A. Oladepo; Kan Xiong; Zhenmin Hong; Sanford A. Asher; Joseph Handen; Igor K. Lednev

A study was conducted to demonstrate ultraviolet resonance Raman (UVRR) investigations of peptide and protein structure and dynamics. The tuning of the excitation wavelengths allowed the probing of different chromophoric segments of a macromolecule. Another advantage of deep UV Raman measurements was that there was no interference from molecular relaxed fluorescence, as those chromophores that had their first transition below 260 nm were highly flexible and possessed small fluorescence quantum yields. UVRR was also used in pump-probe measurements to give kinetic information on fast biological processes. It was a powerful technique for studying static protein structure and for studying protein dynamics, such as in protein folding. The rapid development of UVRR was aided by the latest advancements in lasers, optics, and detectors.


Analytical Chemistry | 2014

2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding

Zhongyu Cai; Jian Tao Zhang; Fei Xue; Zhenmin Hong; David Punihaole; Sanford A. Asher

Bovine and human serum albumin (BSA and HSA) are globular proteins that function as bloodstream carriers of hydrophobes such as fatty acids and drugs. We fabricated novel photonic crystal protein hydrogels by attaching 2D colloidal arrays onto pure BSA and HSA hydrogels. The wavelengths of the diffracted light sensitively report on the protein hydrogel surface area. The binding of charged species to the protein hydrogel gives rise to Donnan potentials that change the hydrogel volume causing shifts in the diffraction. These photonic crystal protein hydrogels act as sensitive Coulometers that monitor the hydrogel charge state. We find multiple high-affinity BSA and HSA binding sites for salicylate, ibuprofen and picosulfate by using these sensors to monitor binding of charged drugs. We demonstrate proof-of-concept for utilizing protein hydrogel sensors to monitor protein-ionic species binding.


Angewandte Chemie | 2015

A Photonic Crystal Protein Hydrogel Sensor for Candida albicans

Zhongyu Cai; Daniel H. Kwak; David Punihaole; Zhenmin Hong; Sachin S. Velankar; Xinyu Liu; Sanford A. Asher

We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments.


Journal of Physical Chemistry B | 2013

UV Resonance Raman and DFT Studies of Arginine Side Chains in Peptides: Insights into Arginine Hydration

Zhenmin Hong; Jonathan Wert; Sanford A. Asher

We examined the UV resonance Raman (UVRR) spectra of four models of the Arg side chain, guanidinium (Gdn), ethylguanidinium (EG), arginine (Arg), and Ac-Arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the Arg side chain. To elucidate the resonance Raman enhancement mechanism of the Arg side chain, we used density functional theory (DFT) to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the Gdn group C-N stretching vibrations, the C-N bond stretching vibration of the Gdn group-methylene linkage is also strongly resonance-enhanced in EG, Arg, and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm(-1) vibration of the Arg side chain depends on its hydration state and can be used to determine the hydration state of the Arg side chain in peptides and proteins. We examined the hydration of the Arg side chain in two polyAla peptides and found that in the α-helical conformation the Arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2).


Applied Spectroscopy | 2015

Dependence of Raman and Resonance Raman Intensities on Sample Self-Absorption

Zhenmin Hong; Sanford A. Asher

Resonance Raman cross sections are generally larger than normal or preresonance Raman cross sections. Thus, higher Raman intensities are expected for resonance excitation, especially for backscattering measurements. However, self absorption decreases the observed Raman intensities. In the work here we examine the effect of self absorption on the observed preresonance and resonance Raman intensities. For the simplest case where a single electronic transition dominates the Raman scattering, and where the resonance enhancement scales with the square of the molar absorptivity of the absorption band, theory predicts that for close to resonance excitation the observed Raman intensities monotonically increase as resonance is approached. In the case that an impurity absorbs, the observed Raman intensities may decrease as excitation moves close to resonance for particular conditions of impurity absorption band widths and frequency offsets. Impurity absorption also causes decreases in observed Raman intensities for the more slowly increasing preresonance excitation.


Journal of Physical Chemistry B | 2011

Circular Dichroism and Ultraviolet Resonance Raman Indicate Little Arg-Glu Side Chain α-Helix Peptide Stabilization

Zhenmin Hong; Zeeshan Ahmed; Sanford A. Asher

Electrostatic interactions between side chains can control the conformation and folding of peptides and proteins. We used circular dichroism (CD) and ultraviolet (UV) resonance Raman spectroscopy (UVRR) to examine the impact of side chain charge on the conformations of two 21 residue mainly polyala peptides with a few Arg and Glu residues. We expected that attractions between Arg-10 and Glu-14 side chains would stabilize the α-helix conformation compared to a peptide with an Arg-14. Surprisingly, CD suggests that the peptide with the Glu-14 is less helical. In contrast, the UVRR show that these two peptides have similar α-helix content. We conclude that the peptide with Glu-14 has the same net α-helix content as the peptide with the Arg but has two α-helices of shorter length. Thus, side chain interactions between Arg-10 and Glu-14 have a minor impact on α-helix stability. The thermal melting of these two peptides is similar. However the Glu-14 peptide pH induced melting forms type III turn structures that form α-helix-turn-α-helix conformations.


Journal of Physical Chemistry B | 2016

Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure

David Punihaole; Riley J. Workman; Zhenmin Hong; Jeffry D. Madura; Sanford A. Asher

Understanding the structure of polyglutamine (polyQ) amyloid-like fibril aggregates is crucial to gaining insights into the etiology of at least ten neurodegenerative disorders, including Huntingtons disease. Here, we determine the structure of D2Q10K2 (Q10) fibrils using ultraviolet resonance Raman (UVRR) spectroscopy and molecular dynamics (MD). Using UVRR, we determine the fibril peptide backbone Ψ and glutamine (Gln) side chain χ3 dihedral angles. We find that most of the fibril peptide bonds adopt antiparallel β-sheet conformations; however, a small population of peptide bonds exist in parallel β-sheet structures. Using MD, we simulate three different potential fibril structural models that consist of either β-strands or β-hairpins. Comparing the experimentally measured Ψ and χ3 angle distributions to those obtained from the MD simulated models, we conclude that the basic structural motif of Q10 fibrils is an extended β-strand structure. Importantly, we determine from our MD simulations that Q10 fibril antiparallel β-sheets are thermodynamically more stable than parallel β-sheets. This accounts for why polyQ fibrils preferentially adopt antiparallel β-sheet conformations instead of in-register parallel β-sheets like most amyloidogenic peptides. In addition, we directly determine, for the first time, the structures of Gln side chains. Our structural data give new insights into the role that the Gln side chains play in the stabilization of polyQ fibrils. Finally, our work demonstrates the synergistic power and utility of combining UVRR measurements and MD modeling to determine the structure of amyloid-like fibrils.


Journal of Physical Chemistry B | 2014

Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition

Zhenmin Hong; Krishnan Damodaran; Sanford A. Asher

XAO peptide (Ac–X2A7O2–NH2; X: diaminobutyric acid side chain, −CH2CH2NH3+; O: ornithine side chain, −CH2CH2CH2NH3+) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of α-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO–SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO–SDS aggregate α-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ψ angle distributions of aggregated XAO peptides. We resolved α-, π- and 310- helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO4–SDS16 aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables α-helix formation. Four XAO–SDS4 aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the α-helix peptide contacts the water environment.


Applied Spectroscopy | 2013

Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

Lu Ma; Vitali Sikirzhytski; Zhenmin Hong; Igor K. Lednev; Sanford A. Asher

Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.


Journal of Physical Chemistry B | 2015

UV Resonance Raman Investigation of the Aqueous Solvation Dependence of Primary Amide Vibrations

David Punihaole; Ryan S. Jakubek; Elizabeth M. Dahlburg; Zhenmin Hong; Nataliya S. Myshakina; Steven J. Geib; Sanford A. Asher

We investigated the normal mode composition and the aqueous solvation dependence of the primary amide vibrations of propanamide. Infrared, normal Raman, and UV resonance Raman (UVRR) spectroscopy were applied in conjunction with density functional theory (DFT) to assign the vibrations of crystalline propanamide. We examined the aqueous solvation dependence of the primary amide UVRR bands by measuring spectra in different acetonitrile/water mixtures. As previously observed in the UVRR spectra of N-methylacetamide, all of the resonance enhanced primary amide bands, except for the Amide I (AmI), show increased UVRR cross sections as the solvent becomes water-rich. These spectral trends are rationalized by a model wherein the hydrogen bonding and the high dielectric constant of water stabilizes the ground state dipolar (-)O-C═NH2(+) resonance structure over the neutral O═C-NH2 resonance structure. Thus, vibrations with large C-N stretching show increased UVRR cross sections because the C-N displacement between the electronic ground and excited state increases along the C-N bond. In contrast, vibrations dominated by C═O stretching, such as the AmI, show a decreased displacement between the electronic ground and excited state, which result in a decreased UVRR cross section upon aqueous solvation. The UVRR primary amide vibrations can be used as sensitive spectroscopic markers to study the local dielectric constant and hydrogen bonding environments of the primary amide side chains of glutamine (Gln) and asparagine (Asn).

Collaboration


Dive into the Zhenmin Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kan Xiong

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Lu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Geib

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Zhongyu Cai

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge