Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenxing Feng is active.

Publication


Featured researches published by Zhenxing Feng.


Journal of the American Chemical Society | 2017

Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

Hanguang Zhang; Sooyeon Hwang; Maoyu Wang; Zhenxing Feng; Stavros Karakalos; Langli Luo; Zhi Qiao; Xiaohong Xie; Chongmin Wang; Dong Su; Yuyan Shao; Gang Wu

It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe-N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6-1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.


Scientific Reports | 2016

Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors

Nantao Hu; Liling Zhang; Chao Yang; Jian Zhao; Zhi Yang; Hao Wei; Hanbin Liao; Zhenxing Feng; Adrian Fisher; Yafei Zhang; Zhichuan J. Xu

Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.


Advanced Materials | 2017

Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition‐Metal Spinels

Chao Wei; Zhenxing Feng; Günther G. Scherer; James Barber; Yang Shao-Horn; Zhichuan J. Xu

Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal-air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2 O4 , the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including Mnx Co3-x O4 (x = 2, 2.5, 3), Lix Mn2 O4 (x = 0.7, 1), XCo2 O4 (X = Co, Ni, Zn), and XFe2 O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.


Journal of Physical Chemistry Letters | 2014

Anomalous Interface and Surface Strontium Segregation in (La1–ySry)2CoO4±δ/La1–xSrxCoO3−δ Heterostructured Thin Films

Zhenxing Feng; Yizhak Yacoby; Milind Gadre; Yueh-Lin Lee; Wesley T. Hong; Hua Zhou; Michael D. Biegalski; Hans M. Christen; Stuart B. Adler; Dane Morgan; Yang Shao-Horn

Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ grown on SrTiO3. We observe anomalous strontium segregation from the perovskite to the interface and the Ruddlesden-Popper phase using direct X-ray methods as well as with ab initio calculations. Such Sr segregation occurred during the film growth, and no significant changes were found upon subsequent annealing in O2. Our findings provide insights into the design of highly active catalysts for oxygen electrocatalysis.


Advanced Energy Materials | 2016

POLYANTHRAQUINONE-BASED ORGANIC CATHODE FOR HIGH-PERFORMANCE RECHARGEABLE MAGNESIUM-ION BATTERIES

Baofei Pan; Jinhua Huang; Zhenxing Feng; Li Zeng; Meinan He; Lu Zhang; John T. Vaughey; Michael J. Bedzyk; Paul Fenter; Zhengcheng Zhang; Anthony K. Burrell; Chen Liao

A rechargeable magnesium ion electrochemical cell comprising an anode, a cathode, and a non-aqueous magnesium electrolyte disposed between the anode and the cathode is described herein. The cathode comprises a redox-active anthraquinone-based polymer comprising one or more of 1,4-polyanthraquinone or 2,6-polyanthraquinone. Both 2,6-polyanthraquinone and 1,4-polyanthraquinone can operate with 1.5-2.0 V with above 100 mAh/g capacities at a reasonable rate, higher than the state-of-the-art Mg—Mg6S8 battery. More than 1000 cycles with very small capacity loss can be realized.


Advanced Materials | 2017

Novel Preparation of N‐Doped SnO2 Nanoparticles via Laser‐Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties

Luyuan Paul Wang; Yann Leconte; Zhenxing Feng; Chao Wei; Yi Zhao; Qing Ma; Wenqian Xu; Samantha Bourrioux; Philippe Azais; Madhavi Srinivasan; Zhichuan J. Xu

Laser pyrolyzed SnO2 nanoparticles with an option of nitrogen (N) doping are prepared using a cost-effective method. The electrochemical performance of N-doped samples is tested for the first time in Li-ion batteries where the sample with 3% of N-dopant exhibits optimum performance with a capacity of 522 mAh gactive material-1 that can be obtained at 10 A g-1 (6.7C).


ACS Applied Materials & Interfaces | 2016

Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

Meinan He; Chi-Cheung Su; Cameron Peebles; Zhenxing Feng; Justin G. Connell; Chen Liao; Yan Wang; Ilya A. Shkrob; Zhengcheng Zhang

Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.


Journal of Physical Chemistry Letters | 2013

In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La0.8Sr0.2CoO3−δ Perovskite Thin Films

Zhenxing Feng; Ethan J. Crumlin; Wesley T. Hong; Dongkyu Lee; Eva Mutoro; Michael D. Biegalski; Hua Zhou; Hendrik Bluhm; Hans M. Christen; Yang Shao-Horn

Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.8Sr0.2CoO3-δ (LSC113) and (La0.5Sr0.5)2CoO4+δ (LSC214)-decorated LSC113 (LSC113/214) thin films as a function of temperature. Heating the (001)-oriented LSC113 surface leads to the formation of surface LSC214-like particles, which is further confirmed by ex situ Auger electron spectroscopy (AES). In contrast, the LSC113/214 surface, with activities much higher than that of LSC113, is stable upon heating. Combined in situ XRR and APXPS measurements support that Sr enrichment may occur at the LSC113 and LSC214 interface, which can be responsible for its markedly enhanced activities.


Advanced Materials | 2018

Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

Xiao Xia Wang; David A. Cullen; Yung-Tin Pan; Sooyeon Hwang; Maoyu Wang; Zhenxing Feng; Jingyun Wang; Mark H. Engelhard; Hanguang Zhang; Yanghua He; Yuyan Shao; Dong Su; Karren L. More; Jacob S. Spendelow; Gang Wu

Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.


Accounts of Chemical Research | 2016

Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

Zhenxing Feng; Wesley T. Hong; Dillon D. Fong; Yueh Lin Lee; Yizhak Yacoby; Dane Morgan; Yang Shao-Horn

Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalysts activity while maintaining stability to design efficient, cost-effective electrocatalysts.

Collaboration


Dive into the Zhenxing Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey W. Elam

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul Fenter

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhichuan J. Xu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yang Shao-Horn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhengcheng Zhang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chao Wei

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Anthony K. Burrell

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hua Zhou

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Li Zeng

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge