Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenyu Yue is active.

Publication


Featured researches published by Zhenyu Yue.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor

Zhenyu Yue; Shengkan Jin; Chingwen Yang; Arnold J. Levine; Nathaniel Heintz

The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.


Nature Cell Biology | 2009

Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1- phosphatidylinositol 3-kinase complex

Yun Zhong; Qing Jun Wang; Xianting Li; Ying Yan; Jonathan M. Backer; Brian T. Chait; Nathaniel Heintz; Zhenyu Yue

Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1–Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration

Masaaki Komatsu; Qing Jun Wang; Victor L. Friedrich; Junichi Iwata; Eiki Kominami; Brian T. Chait; Keiji Tanaka; Zhenyu Yue

Autophagy is a regulated lysosomal degradation process that involves autophagosome formation and transport. Although recent evidence indicates that basal levels of autophagy protect against neurodegeneration, the exact mechanism whereby this occurs is not known. By using conditional knockout mutant mice, we report that neuronal autophagy is particularly important for the maintenance of local homeostasis of axon terminals and protection against axonal degeneration. We show that specific ablation of an essential autophagy gene, Atg7, in Purkinje cells initially causes cell-autonomous, progressive dystrophy (manifested by axonal swellings) and degeneration of the axon terminals. Consistent with suppression of autophagy, no autophagosomes are observed in these dystrophic swellings, which is in contrast to accumulation of autophagosomes in the axonal dystrophic swellings under pathological conditions. Axonal dystrophy of mutant Purkinje cells proceeds with little sign of dendritic or spine atrophy, indicating that axon terminals are much more vulnerable to autophagy impairment than dendrites. This early pathological event in the axons is followed by cell-autonomous Purkinje cell death and mouse behavioral deficits. Furthermore, ultrastructural analyses of mutant Purkinje cells reveal an accumulation of aberrant membrane structures in the axonal dystrophic swellings. Finally, we observe double-membrane vacuole-like structures in wild-type Purkinje cell axons, whereas these structures are abolished in mutant Purkinje cell axons. Thus, we conclude that the autophagy protein Atg7 is required for membrane trafficking and turnover in the axons. Our study implicates impairment of axonal autophagy as a possible mechanism for axonopathy associated with neurodegeneration.


Neuron | 2014

Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits

Guomei Tang; Kathryn Gudsnuk; Sheng-Han Kuo; Marisa L. Cotrina; Gorazd Rosoklija; Alexander A. Sosunov; Mark S. Sonders; Ellen Kanter; Candace Castagna; Ai Yamamoto; Zhenyu Yue; Ottavio Arancio; Bradley S. Peterson; Frances A. Champagne; Andrew J. Dwork; James E. Goldman; David Sulzer

Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.


The Journal of Neuroscience | 2006

Induction of Autophagy in Axonal Dystrophy and Degeneration

Qing Jun Wang; Yaomei Ding; Stave Kohtz; Noboru Mizushima; Ileana M. Cristea; Michael P. Rout; Brian T. Chait; Yun Zhong; Nathaniel Heintz; Zhenyu Yue

Autophagy is a highly regulated cellular mechanism for the bulk degradation of cytoplasmic contents. It has been implicated in a variety of physiological and pathological conditions relevant to neurological diseases. However, the regulation of autophagy in neurons and its role in neuronal and axonal pathology are not yet understood. Using transgenic mice producing green fluorescent protein-tagged autophagic marker microtubule-associated protein light chain 3 (GFP–LC3), we provide molecular evidence for the induction of autophagy in axonal dystrophy and degeneration in Purkinje cells of the Lurcher mice, a model for excitotoxic neurodegeneration. We show that the excitotoxic insult of Lurcher mutation triggers an early response of Purkinje cells involving accumulation of GFP–LC3-labeled autophagosomes in axonal dystrophic swellings (a hallmark of CNS axonopathy). In brain, LC3 interacts with high affinity with the microtubule-associated protein 1B (MAP1B). We show that MAP1B binds to LC3 of both cytosolic form (LC3I) and lipidated form (LC3II). Moreover, in cell culture, overexpression of MAP1B results in reduced LC3II levels and number of GFP–LC3-labeled autophagosomes; phosphorylated MAP1B is associated with GFP–LC3-labeled autophagosomes. Furthermore, in brain, phosphorylated MAP1B accumulates in axonal dystrophic swellings of degenerating Purkinje cells and binds to LC3 at increased level. Therefore, the MAP1B–LC3 interaction may participate in regulation of LC3-associated autophagosomes in neurons, in particular at axons, under normal and pathogenic conditions. We propose that induction of autophagy serves as an early stress response in axonal dystrophy and may participate in the remodeling of axon structures.


Gastroenterology | 2012

Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues

Virginia Hernández–Gea; Zahra Ghiassi–Nejad; Raphael Rozenfeld; Ronald E. Gordon; Maria Isabel Fiel; Zhenyu Yue; Mark J. Czaja; Scott L. Friedman

BACKGROUND & AIMS The pathogenesis of liver fibrosis involves activation of hepatic stellate cells, which is associated with depletion of intracellular lipid droplets. When hepatocytes undergo autophagy, intracellular lipids are degraded in lysosomes. We investigated whether autophagy also promotes loss of lipids in hepatic stellate cells to provide energy for their activation and extended these findings to other fibrogenic cells. METHODS We analyzed hepatic stellate cells from C57BL/6 wild-type, Atg7(F/F), and Atg7(F/F)-GFAP-Cre mice, as well as the mouse stellate cell line JS1. Fibrosis was induced in mice using CCl(4) or thioacetamide (TAA); liver tissues and stellate cells were analyzed. Autophagy was blocked in fibrogenic cells from liver and other tissues using small interfering RNAs against Atg5 or Atg7 and chemical antagonists. Human pulmonary fibroblasts were isolated from samples of lung tissue from patients with idiopathic pulmonary fibrosis or from healthy donors. RESULTS In mice, induction of liver injury with CCl(4) or TAA increased levels of autophagy. We also observed features of autophagy in activated stellate cells within injured human liver tissue. Loss of autophagic function in cultured mouse stellate cells and in mice following injury reduced fibrogenesis and matrix accumulation; this effect was partially overcome by providing oleic acid as an energy substrate. Autophagy also regulated expression of fibrogenic genes in embryonic, lung, and renal fibroblasts. CONCLUSIONS Autophagy of activated stellate cells is required for hepatic fibrogenesis in mice. Selective reduction of autophagic activity in fibrogenic cells in liver and other tissues might be used to treat patients with fibrotic diseases.


The Journal of Neuroscience | 2010

Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

Xianting Li; Jyoti C. Patel; Jing Wang; Marat V. Avshalumov; Charles Nicholson; Joseph D. Buxbaum; Gregory A. Elder; Margaret E. Rice; Zhenyu Yue

PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinsons disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.


Journal of Neurochemistry | 2007

Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants

Xianting Li; Yin-Cai Tan; Shibu Poulose; C. Warren Olanow; Xin-Yun Huang; Zhenyu Yue

Mutations in Leucine‐rich repeat kinase 2 (LRRK2) are linked to the most common familial forms and some sporadic forms of Parkinson’s disease (PD). The LRRK2 protein contains two well‐known functional domains, MAPKKK‐like kinase and Rab‐like GTPase domains. Emerging evidence shows that LRRK2 contains kinase activity which is enhanced in several PD‐associated mutants of LRRK2. However, the GTPase activity of LRRK2 has yet to be formally demonstrated. Here, we produced and purified the epitope‐tagged LRRK2 protein from transgenic mouse brain, and showed that purified brain LRRK2 possesses both kinase and GTPase activity as assayed by GTP binding and hydrolysis. The brain LRRK2 is associated with elevated kinase activity in comparison to that from transgenic lung or transfected cultured cells. In transfected cell cultures, we detected GTP hydrolysis activity in full‐length as well as in GTPase domain of LRRK2. This result indicates that LRRK2 GTPase can be active independent of LRRK2 kinase activity (while LRRK2 kinase activity requires the presence of LRRK2 GTPase as previously shown). We further found that PD mutation R1441C/G in the GTPase domain causes reduced GTP hydrolysis activity, consistent with the altered enzymatic activity in the mutant LRRK2 carrying PD familial mutations. Therefore, our study shows the biochemical characteristics of brain‐specific LRRK2 which is associated with robust kinase and GTPase activity. The distinctive levels of kinase/GTPase activity in brain LRRK2 may help explain LRRK2‐associated neuronal functions or dysfunctions in the pathogenesis of PD.


The EMBO Journal | 2017

Molecular definitions of autophagy and related processes

Lorenzo Galluzzi; Eric H. Baehrecke; Andrea Ballabio; Patricia Boya; José Manuel Bravo-San Pedro; Francesco Cecconi; Augustine M. K. Choi; Charleen T. Chu; Patrice Codogno; María I. Colombo; Ana Maria Cuervo; Jayanta Debnath; Vojo Deretic; Ivan Dikic; Eeva-Liisa Eskelinen; Gian Maria Fimia; Simone Fulda; David A. Gewirtz; Douglas R. Green; Malene Hansen; J. Wade Harper; Marja Jäättelä; Terje Johansen; Gábor Juhász; Alec C. Kimmelman; Claudine Kraft; Nicholas T. Ktistakis; Sharad Kumar; Beth Levine; Carlos López-Otín

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy‐related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Cell Death & Differentiation | 2008

Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress.

Ullman E; Fan Y; Stawowczyk M; Huifen Chen; Zhenyu Yue; Wei Xing Zong

Taken together, data obtained with kinase inhibitors and quantitative immunofluorescence analyses support strongly the idea that early mouse embryos inherit fully Ser472/ Thr308-phosphorylated AKT from oogenesis and that initial embryo cleavages are independent on growth factors, making PI3K and PDK1 activities dispensable. This conclusion is in agreement with previous observations that mouse preimplantation embryo development requires PI3K activity from the 8/16-cell stage. If TCL1 is not relevant to AKT phosphorylation in one-cell and two-cell embryos, is this factor needed for the phosphorylated AKT transfer to nucleus? We have addressed this issue by determining the intracellular distribution of Ser473/ Thr308-phosphorylated AKT in two-cell embryos that were genetically deficient in TCL1. Phosphorylated AKT had a striking cortical localization and was lacking in blastomere nuclei (Figure 1e), pinpointing the cell membrane as an obligatory step among the intracellular movements of phosphorylated AKT. In fact, it is commonly accepted that TCL1 oligomerizes with AKT at the level of cell membrane and that the TCL1–AKT complex is then transferred to nucleus. In conclusion, early mouse embryos display a physiological dissociation between the TCL1 functions of AKT phosphorylation and phosphorylated AKT transfer to nucleus, pinpointing the latter function as the essential one for the AKT-mediated promotion of cell proliferation. In addition, the present finding that TCL1 enters one-cell embryo pronuclei, while phosphorylated AKT does not, suggests that TCL1 also plays an AKTindependent role(s) at the beginning of embryo development. In light of the recent finding that TCL1 binds the PNPase exoribonuclease, an enzyme that specifically degrades polyAþ RNAs, it is tempting to hypothesize that this factor is also relevant for the degradation of maternally derived messages. Acknowledgements. We thank Dr Domenico Grillo for help in quantitative immunofluorescence determinations and Dr Adriana Bosco for genotyping Tcl1 / mice. This work was supported by grants from Istituto Pasteur — Fondazione Cenci Bolognetti to FM and Associazione Italiana Ricerca sul Cancro and Ministero della Salute to GR.

Collaboration


Dive into the Zhenyu Yue's collaboration.

Top Co-Authors

Avatar

Xianting Li

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liqiang He

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renae Barr

Edith Cowan University

View shared research outputs
Top Co-Authors

Avatar

Min Li

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge