Zhenzhen Cao
Wuhan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenzhen Cao.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Antao Luo; Jihua Ma; Yejia Song; Chunping Qian; Ying Wu; Peihua Zhang; Leilei Wang; Chen Fu; Zhenzhen Cao; John C. Shryock
An increase of cardiac late sodium current (INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na(+)) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from -120 to -20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from -90 to -20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 (n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 (n = 12) in ventricular myocytes. Na(+) channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.
Experimental Physiology | 2015
Ying Wu; Leilei Wang; Jihua Ma; Yejia Song; Peihua Zhang; Antao Luo; Chen Fu; Zhenzhen Cao; Xiaojing Wang; John C. Shryock; Luiz Belardinelli
What is the central question of this study? What are the effects of protein kinase C (PKC) and Ca2+–calmodulin‐dependent protein kinase II (CaMKII) on late sodium current (INaL), reverse Na+–Ca2+ exchange current (reverse INCX) or intracellular Ca2+ levels changed by ouabain? What is the main finding and its importance? Ouabain, even at low concentrations (0.5–8.0 μm), can increase INaL and reverse INCX, and these effects may contribute to the effect of the glycoside to increase Ca2+ transients and contractility. Both PKC and CaMKII activities may mediate or modulate these processes.
Acta Pharmacologica Sinica | 2015
Antao Luo; Zhenzhen Cao; Yu Xiang; Shuo Zhang; Chunping Qian; Chen Fu; Peihua Zhang; Jihua Ma
Aim:Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.Methods:Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.Results:Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).Conclusion:Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.
Experimental Physiology | 2017
Chen Fu; Jie Hao; Mengliu Zeng; Yejia Song; Wanzhen Jiang; Peihua Zhang; Antao Luo; Zhenzhen Cao; Luiz Belardinelli; Jihua Ma
What is the central question of this study? Hypoxia‐induced increase in late sodium current (INa,L) is associated with conditions causing cellular Ca2+ overload and contributes to arrhythmogenesis in the ventricular myocardium. The INa,L is an important drug target. We investigated intracellular signal transduction pathways involved in modulation of INa,L during hypoxia. What is the main finding and its importance? Hypoxia caused increases in INa,L, reverse Na+–Ca2+ exchange current and diastolic [Ca2+], which were attenuated by inhibitors of Ca2+–calmodulin‐dependent protein kinase II (CaMKII) and protein kinase C and by a Ca2+ chelator. The findings suggest that CaMKII, protein kinase C and Ca2+ all participate in mediation of the effect of hypoxia to increase INa,L.
Oncotarget | 2017
Mengliu Zeng; Wanzhen Jiang; Youjia Tian; Jie Hao; Zhenzhen Cao; Zhipei Liu; Chen Fu; Peihua Zhang; Jihua Ma
Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca2+]o=3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited INa and ICaL, but had no effect on Ito, IKur, IK1, or IKr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo, and these effects result from INa and ICaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca2+]o=3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited INa and ICaL, but had no effect on Ito, IKur, IK1, or IKr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo, and these effects result from INa and ICaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.
Experimental Physiology | 2017
Chen Fu; Jie Hao; Mengliu Zeng; Yejia Song; Wanzhen Jiang; Peihua Zhang; Antao Luo; Zhenzhen Cao; Luiz Belardinelli; Jihua Ma
What is the central question of this study? Hypoxia‐induced increase in late sodium current (INa,L) is associated with conditions causing cellular Ca2+ overload and contributes to arrhythmogenesis in the ventricular myocardium. The INa,L is an important drug target. We investigated intracellular signal transduction pathways involved in modulation of INa,L during hypoxia. What is the main finding and its importance? Hypoxia caused increases in INa,L, reverse Na+–Ca2+ exchange current and diastolic [Ca2+], which were attenuated by inhibitors of Ca2+–calmodulin‐dependent protein kinase II (CaMKII) and protein kinase C and by a Ca2+ chelator. The findings suggest that CaMKII, protein kinase C and Ca2+ all participate in mediation of the effect of hypoxia to increase INa,L.
Acta Pharmacologica Sinica | 2016
Chao Wang; Leilei Wang; Chi Zhang; Zhenzhen Cao; Antao Luo; Peihua Zhang; Xinrong Fan; Jihua Ma
Aim:The augmentation of late sodium current (INa.L) not only causes intracellular Na+ accumulation, which results in intracellular Ca2+ overload via the reverse mode of the Na+/Ca2+ exchange current (reverse-INCX), but also prolongs APD and induces early afterdepolarizations (EAD), which can lead to arrhythmia and cardiac dysfunction. Thus, the inhibition of INa.L is considered to be a potential way for therapeutic intervention in ischemia and heart failure. In this study we investigated the effects of tolterodine (Tol), a competitive muscarinic receptor antagonist, on normal and veratridine (Ver)-augmented INa.L, reverse-INCX and APD in isolated rabbit ventricular myocytes, which might contribute to its cardioprotective activity.Methods:Rabbit ventricular myocytes were prepared. The INa.L and reverse-INCX were recorded in voltage clamp mode, whereas action potentials and Ver-induced early afterdepolarizations (EADs) were recorded in current clamp mode. Drugs were applied via superfusion.Results:Tol (3–120 nmol/L) concentration-dependently inhibited the normal and Ver-augmented INa.L with IC50 values of 32.08 nmol/L and 42.47 nmol/L, respectively. Atropine (100 μmol/L) did not affect the inhibitory effects of Tol (30 nmol/L) on Ver-augmented INa.L. In contrast, much high concentrations of Tol was needed to inhibit the transient sodium current (INa.T) with an IC50 value of 183.03 μmol/L. In addition, Tol (30 nmol/L) significantly shifted the inactivation curve of INa.T toward a more depolarizing membrane potential without affecting its activation characteristics. Moreover, Tol (30 nmol/L) significantly decreased Ver-augmented reverse-INCX. Tol (30 nmol/L) increased the action potential duration (APD) by 16% under the basal conditions. Ver (20 μmol/L) considerably extended the APD and evoked EADs in 18/24 cells (75%). In the presence of Ver, Tol (30 nmol/L) markedly decreased the APD and eliminated EADs (0/24 cells).Conclusion:Tol inhibits normal and Ver-augmented INaL and decreases Ver-augmented reverse-INCX. In addition, Tol reverses the prolongation of the APD and eliminates the EADs induced by Ver, thus prevents Ver-induced arrhythmia.
Pacing and Clinical Electrophysiology | 2017
Antao Luo; Zhipei Liu; Zhenzhen Cao; Jie Hao; Lin Wu; Chen Fu; Mengliu Zeng; Wanzhen Jiang; Peihua Zhang; Buchang Zhao; Tao Zhao; Jing Zhao; Jihua Ma
An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently intracellular Ca2+ ([Ca2+]i) overload via the stimulated reverse Na+‐Ca2+ exchange (NCX). Wenxin Keli (WXKL) is an effective antiarrhythmic Chinese herb extract, but the underlying mechanisms are unclear.
Frontiers in Physiology | 2017
Wanzhen Jiang; Mengliu Zeng; Zhenzhen Cao; Zhipei Liu; Jie Hao; Peipei Zhang; Youjia Tian; Peihua Zhang; Jihua Ma
Icariin, a flavonoid monomer from Herba Epimedii, has confirmed pharmacological and biological effects. However, its effects on arrhythmias and cardiac electrophysiology remain unclear. Here we investigate the effects of icariin on ion currents and action potentials (APs) in the rabbit myocardium. Furthermore, the effects of icariin on aconitine-induced arrhythmias were assessed in whole rabbits. Ion currents and APs were recorded in voltage-clamp and current-clamp mode in rabbit left ventricular myocytes (LVMs) and left atrial myocytes (LAMs), respectively. Icariin significantly shortened action potential durations (APDs) at 50 and 90% repolarization (APD50 and APD90) and reduced AP amplitude (APA) and the maximum upstroke velocity (Vmax) of APs in LAMs and LVMs; however, icariin had no effect on resting membrane potential (RMP) in these cells. Icariin decreased the rate-dependence of the APD and completely abolished anemonia toxin II (ATX-II)-induced early afterdepolarizations (EADs). Moreover, icariin significantly suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs) elicited by isoproterenol (ISO, 1 μM) and high extracellular calcium concentrations ([Ca2+]o, 3.6 mM) in LVMs. Icariin also decreased INaT in a concentration-dependent manner in LAMs and LVMs, with IC50 values of 12.28 ± 0.29 μM (n = 8 cells/4 rabbits) and 11.83 ± 0.92 μM (n = 10 cells/6 rabbits; p > 0.05 vs. LAMs), respectively, and reversed ATX-II-induced INaL in a concentration-dependent manner in LVMs. Furthermore, icariin attenuated ICaL in a dose-dependent manner in LVMs. The corresponding IC50 value was 4.78 ± 0.89 μM (n = 8 cells/4 rabbits), indicating that the aforementioned current in LVMs was 2.8-fold more sensitive to icariin than ICaL in LAMs (13.43 ± 2.73 μM; n = 9 cells/5 rabbits). Icariin induced leftward shifts in the steady-state inactivation curves of INaT and ICaL in LAMs and LVMs but did not have a significant effect on their activation processes. Moreover, icariin had no effects on IK1 and IKr in LVMs or Ito and IKur in LAMs. These results revealed for the first time that icariin is a multichannel blocker that affects INaT, INaL and ICaL in the myocardium and that the drug had significant inhibitory effects on aconitine-induced arrhythmias in whole rabbits. Therefore, icariin has potential as a class I and IV antiarrhythmic drug.
Pharmacology | 2018
Zhenzhen Cao; Zhipei Liu; Peipei Zhang; Liangkun Hu; Jie Hao; Peihua Zhang; Youjia Tian; Zhijing Song; Quankui Zhou; Jihua Ma
Aim: Sodium houttuyfonate (SH), a chemical compound originating from Houttuynia cordata, has been reported to have anti-inflammatory, antibacterial, and antifungal effects, as well as cardioprotective effects. In this study, we investigated the effects of SH on cardiac electrophysiology, because to the best of our knowledge, this issue has not been previously investigated. Methods: We used the whole-cell patch-clamp technique to explore the effects of SH on peak sodium current (INa.P) and late sodium current (INa.L) in isolated rabbit ventricular myocytes. To test the drug safety of SH, we also investigated the effect of SH on rapidly activated delayed rectifier potassium current (IKr). Results: SH (1, 10, 50, and 100 μmol/L) inhibited INa.P in a concentration-dependent manner with an IC50 of 78.89 μmol/L. In addition, SH (100 μmol/L) accelerated the steady state inactivation of INa.P. Moreover, 50 and 100 μmol/L SH inhibited Anemonia sulcata toxin II (ATX II)-increased INa.L by 30.1 and 57.1%, respectively. However, SH (50 and 100 μmol/L) only slightly affected IKr. Conclusions: The inhibitory effects of SH on ATX II-increased INa.L may underlie the electrophysiological mechanisms of the cardioprotective effects of SH; SH has the potential to be an effective and safe antiarrhythmic drug.