Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhesi He is active.

Publication


Featured researches published by Zhesi He.


The Plant Cell | 2011

12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis

Anuja Dave; M. Luisa Hernández; Zhesi He; Vasilios M. E. Andriotis; Fabián E. Vaistij; Tony R. Larson; Ian A. Graham

This work reports the unexpected discovery that levels of the oxylipins OPDA, jasmonic acid (JA), and JA-Ile are elevated in mutant seeds that are disrupted in peroxisomal fatty acid metabolism and compromised in germination. It demonstrates that OPDA, rather than JA, works synergistically with ABA as a key regulator of germination. Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds

Ian Cummins; David J. Wortley; Federico Sabbadin; Zhesi He; Christopher R. Coxon; Hannah E. Straker; Jonathan D. Sellars; Kathryn M. Knight; Lesley Edwards; David Hughes; Shiv Shankhar Kaundun; Sarah-Jane Hutchings; Patrick G. Steel; Robert Edwards

Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.


Plant Physiology | 2012

A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants

M. Luisa Hernández; Lynne Whitehead; Zhesi He; Valeria Gazda; Alison D. Gilday; Ekaterina Kozhevnikova; Fabián E. Vaistij; Tony R. Larson; Ian A. Graham

Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the β-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.

Fabián E. Vaistij; Yinbo Gan; Steven Penfield; Alison D. Gilday; Anuja Dave; Zhesi He; Eve-Marie Josse; Giltsu Choi; Karen J. Halliday; Ian A. Graham

Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic “dormancy-repressing” and “dormancy-promoting” routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.


Nature | 2017

Genome sequence and genetic diversity of European ash trees

Elizabeth Sollars; Andrea L. Harper; Laura J. Kelly; Christine Sambles; Ricardo H. Ramirez-Gonzalez; David Swarbreck; Gemy Kaithakottil; Endymion D. Cooper; Cristobal Uauy; Lenka Havlickova; Gemma Worswick; David J. Studholme; Jasmin Zohren; Deborah L. Salmon; Bernardo Clavijo; Yi Li; Zhesi He; Alison Fellgett; Lea Vig McKinney; Lene Rostgaard Nielsen; Gerry C. Douglas; Erik Dahl Kjær; J. Allan Downie; David Boshier; S. L. Lee; Jo Clark; Murray Grant; Ian Bancroft; Mario Caccamo; Richard J. A. Buggs

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Current Biology | 2016

The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening

Deirdre H. McLachlan; Jue Lan; Christoph-Martin Geilfus; Anthony N Dodd; Tony R. Larson; Alison Baker; Hanna Hõrak; Hannes Kollist; Zhesi He; Ian A. Graham; Michael V. Mickelbart; Alistair M. Hetherington

Summary Stomata regulate the uptake of CO2 and the loss of water vapor [1] and contribute to the control of water-use efficiency [2] in plants. Although the guard-cell-signaling pathway coupling blue light perception to ion channel activity is relatively well understood [3], we know less about the sources of ATP required to drive K+ uptake [3, 4, 5, 6]. Here, we show that triacylglycerols (TAGs), present in Arabidopsis guard cells as lipid droplets (LDs), are involved in light-induced stomatal opening. Illumination induces reductions in LD abundance, and this involves the PHOT1 and PHOT2 blue light receptors [3]. Light also induces decreases in specific TAG molecular species. We hypothesized that TAG-derived fatty acids are metabolized by peroxisomal β-oxidation to produce ATP required for stomatal opening. In silico analysis revealed that guard cells express all the genes required for β-oxidation, and we showed that light-induced stomatal opening is delayed in three TAG catabolism mutants (sdp1, pxa1, and cgi-58) and in stomata treated with a TAG breakdown inhibitor. We reasoned that, if ATP supply was delaying light-induced stomatal opening, then the activity of the plasma membrane H+-ATPase should be reduced at this time. Monitoring changes in apoplastic pH in the mutants showed that this was the case. Together, our results reveal a new role for TAGs in vegetative tissue and show that PHOT1 and PHOT2 are involved in reductions in LD abundance. Reductions in LD abundance in guard cells of the lycophyte Selaginella suggest that TAG breakdown may represent an evolutionarily conserved mechanism in light-induced stomatal opening.


Data in Brief | 2015

Construction of Brassica A and C genome-based ordered pan-transcriptomes for use in rapeseed genomic research

Zhesi He; Feng Cheng; Yi Li; Xiaowu Wang; Isobel A. P. Parkin; Boulos Chalhoub; Shengyi Liu; Ian Bancroft

This data article reports the establishment of the first pan-transcriptome resources for the Brassica A and C genomes. These were developed using existing coding DNA sequence (CDS) gene models from the now-published Brassica oleracea TO1000 and Brassica napus Darmor-bzh genome sequence assemblies representing the chromosomes of these species, along with preliminary CDS models from an updated Brassica rapa Chiifu genome sequence assembly. The B. rapa genome sequence scaffolds required splitting and re-ordering to match the expected genome organisation based on a high density SNP linkage map, but the B. oleracea assembly was used unchanged. The resulting B. rapa (A genome) pseudomolecules contained 47,656 ordered CDS models and the B. oleracea (C genome) pseudomolecules contained 54,766 ordered CDS models. Interpolation of B. napus CDS models not already represented by orthologues resulted in 52,790 and 63,308 ordered CDS models in the A and C pan-transcriptomes, an increase of 13,676 overall. Comparison of the organisation of this resource with publicly available genome sequences for B. napus showed excellent consistency for the B. napus Darmor-bzh resource, but more breakdown of collinearity for the B. napus ZS11 resource. CDS datasets comprising the pan-transcriptomes are available with this article (B. rapa) or from public repositories (B. oleracea and B. napus).


Plant Biotechnology Journal | 2017

Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq‐based visualization

Zhesi He; Lihong Wang; Andrea L. Harper; Lenka Havlickova; Akshay K. Pradhan; Isobel A. P. Parkin; Ian Bancroft

Summary Polyploidy, the possession of multiple sets of chromosomes, has been a predominant factor in the evolution and success of the angiosperms. Although artificially formed allopolyploids show a high rate of genome rearrangement, the genomes of cultivars and germplasm used for crop breeding were assumed stable and genome structural variation under the artificial selection process of commercial breeding has remained little studied. Here, we show, using a repurposed visualization method based on transcriptome sequence data, that genome structural rearrangement occurs frequently in varieties of three polyploid crops (oilseed rape, mustard rape and bread wheat), meaning that the extent of genome structural variation present in commercial crops is much higher than expected. Exchanges were found to occur most frequently where homoeologous chromosome segments are collinear to telomeres and in material produced as doubled haploids. The new insights into genome structural evolution enable us to reinterpret the results of recent studies and implicate homoeologous exchanges, not deletions, as being responsible for variation controlling important seed quality traits in rapeseed. Having begun to identify the extent of genome structural variation in polyploid crops, we can envisage new strategies for the global challenge of broadening crop genetic diversity and accelerating adaptation, such as the molecular identification and selection of genome deletions or duplications encompassing genes with trait‐controlling dosage effects.


Plant Biotechnology Journal | 2016

Genome distribution of differential homoeologue contributions to leaf gene expression in bread wheat

Andrea L. Harper; Martin Trick; Zhesi He; Leah Clissold; Alison Fellgett; Simon Griffiths; Ian Bancroft

Summary Using a combination of de novo transcriptome assembly, a newly developed 9495‐marker transcriptome SNP genetic linkage map and comparative genomics approaches, we developed an ordered set of nonredundant transcripts for each of the subgenomes of hexaploid wheat: A (47 160 unigenes), B (59 663 unigenes) and D (40 588 unigenes). We used these as reference sequences against which to map Illumina mRNA‐Seq reads derived from young leaf tissue. Transcript abundance was quantified for each unigene. Using a three‐way reciprocal BLAST approach, 15 527 triplet sets of homoeologues (one from each genome) were identified. Differential expression (P < 0.05) was identified for 5248 unigenes, with 2906 represented at greater abundance than their two homoeologues and 2342 represented at lower abundance than their two homoeologues. Analysis of gene ontology terms revealed no biases between homoeologues. There was no evidence of genomewide dominance effects, rather the more highly transcribed individual genes were distributed throughout all three genomes. Transcriptome display tile plot, a visualization approach based on CMYK colour space, was developed and used to assess the genome for regions of skewed homoeologue transcript abundance. Extensive striation was revealed, indicative of many small regions of genome dominance (transcripts of homoeologues from one genome more abundant than the others) and many larger regions of genome repression (transcripts of homoeologues from one genome less abundant than the others).


Plant Journal | 2018

Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds

Lenka Havlickova; Zhesi He; Lihong Wang; Swen Langer; Andrea L. Harper; Harjeevan Kaur; Martin R. Broadley; Vasilis Gegas; Ian Bancroft

Summary An updated platform was developed to underpin association genetics studies in the polyploid crop species Brassica napus (oilseed rape). Based on 1.92 × 1012 bases of leaf mRNAseq data, functional genotypes, comprising 355 536 single‐nucleotide polymorphism markers and transcript abundance were scored across a genetic diversity panel of 383 accessions using a transcriptome reference comprising 116 098 ordered coding DNA sequence (CDS) gene models. The use of the platform for Associative Transcriptomics was first tested by analysing the genetic architecture of variation in seed erucic acid content, as high‐erucic rapeseed oil is highly valued for a variety of applications in industry. Known loci were identified, along with a previously undetected minor‐effect locus. The platform was then used to analyse variation for the relative proportions of tocopherol (vitamin E) forms in seeds, and the validity of the most significant markers was assessed using a take‐one‐out approach. Furthermore, the analysis implicated expression variation of the gene Bo2g050970.1, an orthologue of VTE4 (which encodes a γ‐tocopherol methyl transferase converting γ‐tocopherol into α‐tocopherol) associated with the observed trait variation. The establishment of the first full‐scale Associative Transcriptomics platform for B. napus enables rapid progress to be made towards an understanding of the genetic architecture of trait variation in this important species, and provides an exemplar for other crops.

Collaboration


Dive into the Zhesi He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge