Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Dong Ge is active.

Publication


Featured researches published by Zhi-Dong Ge.


Hypertension | 2009

Transient Receptor Potential Vanilloid Type 4–Deficient Mice Exhibit Impaired Endothelium-Dependent Relaxation Induced by Acetylcholine In Vitro and In Vivo

David X. Zhang; Suelhem A. Mendoza; Aaron H. Bubolz; Atsuko Mizuno; Zhi-Dong Ge; Rongshan Li; David C. Warltier; Makoto Suzuki; David D. Gutterman

Agonist-induced Ca2+ entry is important for the synthesis and release of vasoactive factors in endothelial cells. The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+-permeant cation channel, is expressed in endothelial cells and involved in the regulation of vascular tone. Here we investigated the role of TRPV4 channels in acetylcholine-induced vasodilation in vitro and in vivo using the TRPV4 knockout mouse model. The expression of TRPV4 mRNA and protein was detected in both conduit and resistance arteries from wild-type mice. In small mesenteric arteries from wild-type mice, the TRPV4 activator 4α-phorbol-12,13-didecanoate increased endothelial [Ca2+]i in situ, which was reversed by the TRPV4 blocker ruthenium red. In wild-type animals, acetylcholine dilated small mesenteric arteries that involved both NO and endothelium-derived hyperpolarizing factors. In TRPV4-deficient mice, the NO component of the relaxation was attenuated and the endothelium-derived hyperpolarizing factor component was largely eliminated. Compared with their wild-type littermates, TRPV4-deficient mice demonstrated a blunted endothelial Ca2+ response to acetylcholine in mesenteric arteries and reduced NO release in carotid arteries. Acetylcholine (5 mg/kg, IV) decreased blood pressure by 37.0±6.2 mm Hg in wild-type animals but only 16.6±2.7 mm Hg in knockout mice. We conclude that acetylcholine-induced endothelium-dependent vasodilation is reduced both in vitro and in vivo in TRPV4 knockout mice. These findings may provide novel insight into mechanisms of Ca2+ entry evoked by chemical agonists in endothelial cells.


Journal of Pharmacology and Experimental Therapeutics | 2006

Cl-IB-MECA [2-Chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide] Reduces Ischemia/Reperfusion Injury in Mice by Activating the A Adenosine Receptor

Zhi-Dong Ge; Jason Nigel John Peart; Laura M. Kreckler; Tina C. Wan; Marlene A. Jacobson; Garrett J. Gross; John A. Auchampach

We used pharmacological agents and genetic methods to determine whether the potent A3 adenosine receptor (AR) agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide (Cl-IB-MECA) protects against myocardial ischemia/reperfusion injury in mice via the A3AR or via interactions with other AR subtypes. Pretreating wild-type (WT) mice with Cl-IB-MECA reduced myocardial infarct size induced by 30 min of coronary occlusion and 24 h of reperfusion at doses (30 and 100 μg/kg) that concomitantly reduced blood pressure and stimulated systemic histamine release. The A3AR-selective antagonist MRS 1523 [3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine-carboxylate], but not the A2AAR antagonist ZM 241385 [4-{2-7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl}phenol], blocked the reduction in infarct size provided by Cl-IB-MECA, suggesting a mechanism involving the A3AR. To further examine the selectivity of Cl-IB-MECA, we assessed its cardioprotective effectiveness in A3AR gene “knock-out” (A3KO) mice. Cl-IB-MECA did not reduce myocardial infarct size in A3KO mice in vivo and did not protect isolated perfused hearts obtained from A3KO mice from injury induced by global ischemia and reperfusion. Additional studies using WT mice treated with compound 48/80 [condensation product of p-methoxyphenethyl methylamine with formaldehyde] to deplete mast cell contents excluded the possibility that Cl-IB-MECA was cardioprotective by releasing mediators from mast cells. These data demonstrate that Cl-IB-MECA protects against myocardial ischemia/reperfusion injury in mice principally by activating the A3AR.


Journal of Pharmacology and Experimental Therapeutics | 2007

The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3'-aminoadenosine-5'-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel.

Tina Wan; Zhi-Dong Ge; Akihito Tampo; Mio Y; Martin Bienengraeber; Tracey Wr; G. J. Gross; Wai-Meng Kwok; John A. Auchampach

We examined the cardioprotective profile of the new A3 adenosine receptor (AR) agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3′-aminoadenosine-5′-N-methylcarboxamide] in an in vivo mouse model of infarction and an isolated heart model of global ischemia/reperfusion injury. In radioligand binding and cAMP accumulation assays using human embryonic kidney 293 cells expressing recombinant mouse ARs, CP-532,903 was found to bind with high affinity to mouse A3ARs (Ki = 9.0 ± 2.5 nM) and with high selectivity versus mouse A1AR (100-fold) and A2AARs (1000-fold). In in vivo ischemia/reperfusion experiments, pretreating mice with 30 or 100 μg/kg CP-532,903 reduced infarct size from 59.2 ± 2.1% of the risk region in vehicle-treated mice to 42.5 ± 2.3 and 39.0 ± 2.9%, respectively. Likewise, treating isolated mouse hearts with CP-532,903 (10, 30, or 100 nM) concentration dependently improved recovery of contractile function after 20 min of global ischemia and 45 min of reperfusion, including developed pressure and maximal rate of contraction/relaxation. In both models of ischemia/reperfusion injury, CP-532,903 provided no benefit in studies using mice with genetic disruption of the A3AR gene, A3 knockout (KO) mice. In isolated heart studies, protection provided by CP-532,903 and ischemic preconditioning induced by three brief ischemia/reperfusion cycles were lost in Kir6.2 KO mice lacking expression of the pore-forming subunit of the sarcolemmal ATP-sensitive potassium (KATP) channel. Whole-cell patch-clamp recordings provided evidence that the A3AR is functionally coupled to the sarcolemmal KATP channel in murine cardiomyocytes. We conclude that CP-532,903 is a highly selective agonist of the mouse A3AR that protects against ischemia/reperfusion injury by activating sarcolemmal KATP channels.


Anesthesiology | 2010

Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism.

Zhi-Dong Ge; Danijel Pravdic; Martin Bienengraeber; Phillip F. Pratt; John A. Auchampach; Garrett J. Gross; Judy R. Kersten; David C. Warltier

Background:The role of endothelial nitric oxide synthase (eNOS) in isoflurane postconditioning (IsoPC)-elicited cardioprotection is poorly understood. The authors addressed this issue using eNOS−/− mice. Methods:In vivo or Langendorff-perfused mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in the presence and absence of postconditioning produced with isoflurane 5 min before and 3 min after reperfusion. Ca2+-induced mitochondrial permeability transition (MPT) pore opening was assessed in isolated mitochondria. Echocardiography was used to evaluate ventricular function. Results:Postconditioning with 0.5, 1.0, and 1.5 minimum alveolar concentrations of isoflurane decreased infarct size from 56 ± 10% (n = 10) in control to 48 ± 10%, 41 ± 8% (n = 8, P < 0.05), and 38 ± 10% (n = 8, P < 0.05), respectively, and improved cardiac function in wild-type mice. Improvement in cardiac function by IsoPC was blocked by NG-nitro-l-arginine methyl ester (a nonselective nitric oxide synthase inhibitor) administered either before ischemia or at the onset of reperfusion. Mitochondria isolated from postconditioned hearts required significantly higher in vitro Ca2+ loading than did controls (78 ± 29 &mgr;m vs. 40 ± 25 &mgr;m CaCl2 per milligram of protein, n = 10, P < 0.05) to open the MPT pore. Hearts from eNOS−/− mice displayed no marked differences in infarct size, cardiac function, and sensitivity of MPT pore to Ca2+, compared with wild-type hearts. However, IsoPC failed to alter infarct size, cardiac function, or the amount of Ca2+ necessary to open the MPT pore in mitochondria isolated from the eNOS−/− hearts compared with control hearts. Conclusions:IsoPC protects mouse hearts from reperfusion injury by preventing MPT pore opening in an eNOS-dependent manner. Nitric oxide functions as both a trigger and a mediator of cardioprotection produced by IsoPC.


Journal of Vascular Research | 2003

Cyclic ADP-Ribose Contributes to Contraction and Ca2+ Release by M1 Muscarinic Receptor Activation in Coronary Arterial Smooth Muscle

Zhi-Dong Ge; David X. Zhang; Ya-Fei Chen; Fu-Xian Yi; Ai-Ping Zou; William B. Campbell; Pin-Lan Li

The present study determined the role of cyclic ADP-ribose (cADPR) in mediating vasoconstriction and Ca2+ release in response to the activation of muscarinic receptors. Endothelium-denuded small bovine coronary arteries were microperfused under transmural pressure of 60 mm Hg. Both acetylcholine (ACh; 1 nmol/L to 1 µmol/L) and oxotremorine (OXO; 2.5–80 µmol/L) produced a concentration-dependent contraction. The vasoconstrictor responses to both ACh and OXO were significantly attenuated by nicotinamide (Nicot; an ADP-ribosyl cyclase inhibitor), 8-bromo-cADPR (8-Br-cADPR; a cADPR antagonist) or ryanodine (Ry; an Ry receptor antagonist). Intracellular Ca2+ ([Ca2+]i) was determined by fluorescence spectrometry using fura-2 as a fluorescence indicator. OXO produced a rapid increase in [Ca2+]i in freshly isolated single coronary arterial smooth muscle cells (CASMCs) bathed with Ca2+-free Hanks’ solution. This OXO-induced rise in [Ca2+]i was significantly reduced by pirenzepine (PIR; an M1 receptor-specific blocker), Nicot, 8-Br-cADPR or Ry. The effects of OXO on the activity of ADP-ribosyl cyclase (cADPR synthase) were examined in cultured CASMCs by measuring the rate of cyclic GDP- ribose (cGDPR) formation from β-nicotinamide guanine dinucleotide. It was found that OXO produced a concentration-dependent increase in the production of cGDPR. The stimulatory effect of OXO on ADP-ribosyl cyclase was inhibited by both PIR and Nicot. These results suggest that the cADPR signaling pathway participates in the contraction of small coronary arterial smooth muscle and Ca2+ release induced by activation of M1 muscarinic receptors.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure.

Sribalaji Lakshmikanthan; Bartosz J. Zieba; Zhi-Dong Ge; Ko Momotani; Xiaodong Zheng; Hayley Lund; Mykhaylo V. Artamonov; Jason E. Maas; Aniko Szabo; David X. Zhang; John A. Auchampach; David L. Mattson; Avril V. Somlyo; Magdalena Chrzanowska-Wodnicka

Objective—Small GTPase Ras-related protein 1 (Rap1b) controls several basic cellular phenomena, and its deletion in mice leads to several cardiovascular defects, including impaired adhesion of blood cells and defective angiogenesis. We found that Rap1b−/− mice develop cardiac hypertrophy and hypertension. Therefore, we examined the function of Rap1b in regulation of blood pressure. Approach and Results—Rap1b−/− mice developed cardiac hypertrophy and elevated blood pressure, but maintained a normal heart rate. Correcting elevated blood pressure with losartan, an angiotensin II type 1 receptor antagonist, alleviated cardiac hypertrophy in Rap1b−/− mice, suggesting a possibility that cardiac hypertrophy develops secondary to hypertension. The indices of renal function and plasma renin activity were normal in Rap1b−/− mice. Ex vivo, we examined whether the effect of Rap1b deletion on smooth muscle–mediated vessel contraction and endothelium-dependent vessel dilation, 2 major mechanisms controlling basal vascular tone, was the basis for the hypertension. We found increased contractility on stimulation with a thromboxane analog or angiotensin II or phenylephrine along with increased inhibitory phosphorylation of myosin phosphatase under basal conditions consistent with elevated basal tone and the observed hypertension. Cyclic adenosine monophosphate–dependent relaxation in response to Rap1 activator, Epac, was decreased in vessels from Rap1b−/− mice. Defective endothelial release of dilatory nitric oxide in response to elevated blood flow leads to hypertension. We found that nitric oxide–dependent vasodilation was significantly inhibited in Rap1b-deficient vessels. Conclusions—This is the first report to indicate that Rap1b in both smooth muscle and endothelium plays a key role in maintaining blood pressure by controlling normal vascular tone.


Anesthesiology | 2015

MicroRNA-21 Mediates Isoflurane-induced Cardioprotection against Ischemia-Reperfusion Injury via Akt/Nitric Oxide Synthase/Mitochondrial Permeability Transition Pore Pathway.

Shigang Qiao; Jessica Olson; Mark Paterson; Yasheng Yan; Ivan Zaja; Yanan Liu; Matthias L. Riess; Judy R. Kersten; Mingyu Liang; David C. Warltier; Zeljko J. Bosnjak; Zhi-Dong Ge

Background:The role of microRNA-21 in isoflurane-induced cardioprotection is unknown. The authors addressed this issue by using microRNA-21 knockout mice and explored the underlying mechanisms. Methods:C57BL/6 and microRNA-21 knockout mice were echocardiographically examined. Mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in vivo or ex vivo in the presence or absence of 1.0 minimum alveolar concentration of isoflurane administered before ischemia. Cardiac Akt, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) proteins were determined by Western blot analysis. Opening of the mitochondrial permeability transition pore (mPTP) in cardiomyocytes was induced by photoexcitation-generated oxidative stress and detected by rapid dissipation of tetramethylrhodamine ethyl ester fluorescence using a confocal microscope. Results:Genetic disruption of miR-21 gene did not alter phenotype of the left ventricle, baseline cardiac function, area at risk, and the ratios of phosphorylated-Akt/Akt, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS. Isoflurane decreased infarct size from 54 ± 10% in control to 36 ± 10% (P < 0.05, n = 8 mice per group), improved cardiac function after reperfusion, and increased the ratios of phosphorylated-Akt/AKT, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS in C57BL/6 mice subjected to ischemia–reperfusion injury. These beneficial effects of isoflurane were lost in microRNA-21 knockout mice. There were no significant differences in time of the mPTP opening induced by photoexcitation-generated oxidative stress in cardiomyocytes isolated between C57BL/6 and microRNA-21 knockout mice. Isoflurane significantly delayed mPTP opening in cardiomyocytes from C57BL/6 but not from microRNA-21 knockout mice. Conclusions:Isoflurane protects mouse hearts from ischemia–reperfusion injury by a microRNA-21-dependent mechanism. The Akt/NOS/mPTP pathway is involved in the microRNA-21-mediated protective effect of isoflurane.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Ras-Related Protein 1 in Smooth Muscle and Endothelium Is Required for Maintenance of Vascular Tone and Normal Blood Pressure

Sribalaji Lakshmikanthan; Bartosz J. Zieba; Zhi-Dong Ge; Ko Momotani; Xiaodong Zheng; Hayley Lund; Mykhaylo V. Artamonov; Jason E. Maas; Aniko Szabo; David X. Zhang; John A. Auchampach; David L. Mattson; Avril V. Somlyo; Magdalena Chrzanowska-Wodnicka

Objective—Small GTPase Ras-related protein 1 (Rap1b) controls several basic cellular phenomena, and its deletion in mice leads to several cardiovascular defects, including impaired adhesion of blood cells and defective angiogenesis. We found that Rap1b−/− mice develop cardiac hypertrophy and hypertension. Therefore, we examined the function of Rap1b in regulation of blood pressure. Approach and Results—Rap1b−/− mice developed cardiac hypertrophy and elevated blood pressure, but maintained a normal heart rate. Correcting elevated blood pressure with losartan, an angiotensin II type 1 receptor antagonist, alleviated cardiac hypertrophy in Rap1b−/− mice, suggesting a possibility that cardiac hypertrophy develops secondary to hypertension. The indices of renal function and plasma renin activity were normal in Rap1b−/− mice. Ex vivo, we examined whether the effect of Rap1b deletion on smooth muscle–mediated vessel contraction and endothelium-dependent vessel dilation, 2 major mechanisms controlling basal vascular tone, was the basis for the hypertension. We found increased contractility on stimulation with a thromboxane analog or angiotensin II or phenylephrine along with increased inhibitory phosphorylation of myosin phosphatase under basal conditions consistent with elevated basal tone and the observed hypertension. Cyclic adenosine monophosphate–dependent relaxation in response to Rap1 activator, Epac, was decreased in vessels from Rap1b−/− mice. Defective endothelial release of dilatory nitric oxide in response to elevated blood flow leads to hypertension. We found that nitric oxide–dependent vasodilation was significantly inhibited in Rap1b-deficient vessels. Conclusions—This is the first report to indicate that Rap1b in both smooth muscle and endothelium plays a key role in maintaining blood pressure by controlling normal vascular tone.


General Pharmacology-the Vascular System | 2000

Effect of nitric oxide on calcium-induced calcium release in coronary arterial smooth muscle

Ningjun Li; Ai-Ping Zou; Zhi-Dong Ge; William B. Campbell; Pin-Lan Li

The present study was designed to determine whether nitric oxide (NO)-induced reduction of [Ca(2+)](i) is associated with Ca(2+)-induced Ca(2+) release (CICR) in coronary arterial smooth muscle cells (CASMCs). Caffeine was used as a CICR activator to induce Ca(2+) release in these cells. The effects of NO donor, sodium nitroprusside (SNP), on caffeine-induced Ca(2+) release were examined in freshly dissociated bovine CASMCs using single cell fluorescence microscopic spectrometry. The effects of NO donor on caffeine-induced coronary vasoconstriction were examined by isometric tension recordings. Caffeine, a CICR or ryanodine receptor (RYR) activator, produced a rapid Ca(2+) release with a 330 nM increase in [Ca(2+)](i). Pretreatment of the CASMCs with SNP, CICR inhibitor tetracaine or RYR blocker ryanodine markedly decreased caffeine-induced Ca(2+) release. Addition of caffeine to the Ca(2+)-free bath solution produced a transient coronary vasoconstriction. SNP, tetracaine and ryanodine, but not guanylyl cyclase inhibitor, ODQ, significantly attenuated caffeine-induced vasoconstriction. These results suggest that CICR is functioning in CASMCs and participates in the vasoconstriction in response to caffeine-induced Ca(2+) release and that inhibition of CICR is of importance in mediating the vasodilator response of coronary arteries to NO.


Cardiovascular Research | 2011

Cardiac-specific overexpression of GTP cyclohydrolase 1 restores ischaemic preconditioning during hyperglycaemia

Zhi-Dong Ge; Irina A. Ionova; Nikolina Vladic; Danijel Pravdic; Naoyuki Hirata; Jeannette Vasquez-Vivar; Phillip F. Pratt; David C. Warltier; Galen M. Pieper; Judy R. Kersten

AIMS Hyperglycaemia (HG) decreases intracellular tetrahydrobiopterin (BH(4)) concentrations, and this action may contribute to injury during myocardial ischaemia and reperfusion. We investigated whether increased BH(4) by cardiomyocyte-specific overexpression of the GTP cyclohydrolase (GTPCH) 1 gene rescues myocardial and mitochondrial protection by ischaemic preconditioning (IPC) during HG through a nitric oxide (NO)-dependent pathway. METHODS AND RESULTS Mice underwent 30 min of myocardial ischaemia followed by 2 h of reperfusion with or without IPC elicited with four cycles of 5 min ischaemia/5 min of reperfusion in the presence or absence of HG produced by d-glucose. In C57BL/6 wild-type mice, IPC increased myocardial BH(4) and NO concentrations and decreased myocardial infarct size (30 ± 3% of risk area) compared with control (56 ± 5%) experiments. This protective effect was inhibited by HG (48 ± 3%) but not hyperosmolarity. GTPCH-1 overexpression increased myocardial BH(4) and NO concentrations and restored cardioprotection by IPC during HG (32 ± 4%). In contrast, a non-selective NO synthase inhibitor N(G)-nitro-l-arginine methyl ester attenuated the favourable effects of GTPCH-1 overexpression (52 ± 3%) during HG. Mitochondria isolated from myocardium subjected to IPC required significantly higher in vitro Ca(2+) concentrations (184 ± 14 µmol mg(-1) protein) to open the mitochondrial permeability transition pore when compared with mitochondria isolated from control experiments (142 ± 10 µmol mg(-1) protein). This beneficial effect of IPC was reversed by HG and rescued by GTPCH-1 overexpression. CONCLUSION Increased BH(4) by cardiomyocyte-specific overexpression of GTPCH-1 preserves the ability of IPC to elicit myocardial and mitochondrial protection that is impaired by HG, and this action appears to be dependent on NO.

Collaboration


Dive into the Zhi-Dong Ge's collaboration.

Top Co-Authors

Avatar

John A. Auchampach

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David C. Warltier

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Judy R. Kersten

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Garrett J. Gross

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Laura M. Kreckler

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Tina C. Wan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Zeljko J. Bosnjak

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David X. Zhang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Yanan Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yang Shi

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge