Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi Min Yang is active.

Publication


Featured researches published by Zhi Min Yang.


FEBS Letters | 2007

Computational identification of novel microRNAs and targets in Brassica napus

Fu Liang Xie; Si Qi Huang; Kai Guo; An Ling Xiang; Yi Yong Zhu; Li Nie; Zhi Min Yang

MicroRNAs (miRNAs) are a newly discovered class of non‐protein‐coding small RNAs with roughly 22 nucleotide‐long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation and apoptosis and stress responses. In this research, several approaches were combined to make computational prediction of potential miRNAs and their targets in Brassica napus. We used previously known miRNAs from Arabidopsis, rice and other plant species against both expressed sequence tags (EST) and genomic survey sequence (GSS) databases to search for potential miRNAs in B. napus. A total of 21 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database and found 67 potential targets in this species. According to the mRNA target information provided by NCBI (http://www.ncbi.nlm.nih.gov/), most of the target mRNAs appeared to be involved in plant growth, development and stress responses. To validate the prediction of miRNAs in B. napus, we performed a RT‐PCR based assay of mature miRNA expression. Five miRNAs were identified in response to auxin, cadmium stress and phosphate starvation. So far, little is known about experimental or computational identification of miRNA in B. napus species. To improve efficiency for blast search, we developed an implementation (miRNAassist) that can identify homologs of miRNAs and their targets, with high sensitivity and specificity. The program is allowed to be run on Windows Operation System platform. miRNAassist is freely available if required.


Plant and Cell Physiology | 2008

Copper-Induced Proline Synthesis is Associated with Nitric Oxide Generation in Chlamydomonas reinhardtii

Li Ping Zhang; Surya Kant Mehta; Zhao Pu Liu; Zhi Min Yang

Excess copper affects the growth and metabolism of plants and green algae. However, the physiological processes under Cu stress are largely unknown. In this study, we investigated Cu-induced nitric oxide (NO) generation and its relationship to proline synthesis in Chlamydomonas reinhardtii. The test alga accumulated a large amount of proline after exposure to relatively low Cu concentrations (2.5 and 5.0 microM Cu2+). A concomitant increase in the intracellular NO level was observed with increasing concentrations of Cu applied. Data analysis revealed that the endogenous NO generated was positively associated with the proline level in Cu-stressed algae. The involvement of NO in Cu-induced proline accumulation was confirmed by using an NO-specific donor, sodium nitroprusside (SNP), and an NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide]. Pre-treatment with 10 microM SNP increased the proline accumulation in Cu-treated cells by about 1.5-fold, while this effect could be blocked by addition of 10 microM cPTIO. We further investigated the effect of Cu and NO on the activity and transcript amount of Delta(1)-pyrroline-5-carboxylate synthetase (P5CS, EC 2.7.2.11), the key enzyme of proline biosynthesis, and observed that application of SNP was able to stimulate the P5CS activity and up-regulate the expression of P5CS in the Cu-treated algae. These results indicate that Cu-responsive proline synthesis is closely related to NO generation in C. reinhardtii, suggesting the regulatory function of NO in proline metabolism under heavy metal stress.


Biochemical and Biophysical Research Communications | 2008

Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula.

Zhao Sheng Zhou; Si Qi Huang; Zhi Min Yang

MicroRNAs (miRNAs) are a class of non-protein coding small RNAs that regulate gene post-transcriptional expression in plants and animals. Although more than 1280 miRNAs in plant kingdom have been discovered thus far, only a handful of plant miRNAs has been intensively identified. The legume Medicago truncatula is a model system widely used to investigate gene transcription or post-transcriptional processes for arbuscular mycorrhiza development. In this study, we used a bioinformatics approach for ESTs (Expressed Sequence Tags)- and GSS (Genomic Survey Sequences)-wide prediction of novel miRNAs in M. truncatula. A total of 38 potential miRNAs were detected following a range of filtering criteria. After removal of 12 overlapping miRNAs that have already been deposited in miRNA Registry (Release 11.0), 26 miRNAs belonging to 15 families were found to be new. Using the newly identified miRNA sequences, we were able to further blast the M. truncatula mRNA database and detected 16 potential targets of miRNAs. Many miRNA targeted genes were predicted to encode transcription factors that regulate plant development, signaling, and metabolism. To verify the prediction of the miRNAs in M. truncatula, the qRT-PCR-based assay was performed. Our results showed that eight of the miRNA families displayed different patterns of expression in tissues. Additionally, expression of these miRNAs was up- or down-regulated by heavy metals (Hg, Cd, and Al). The above results implied that some of the miRNAs are involved in the regulation of development and plant response to heavy metal stress.


Plant Cell and Environment | 2012

Genome‐wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal

Zhao Sheng Zhou; Hou Qing Zeng; Zhao Pu Liu; Zhi Min Yang

We adopted a deep sequencing approach developed by Solexa (Illumina Inc., San Diego, CA, USA) to investigate global expression and complexity of microRNAs (miRNAs) and their targets from Medicago truncatula. Two small RNA libraries and two degradome libraries were constructed from mercury (Hg)-treated and Hg-free M. truncatula seedlings. For miRNAs, each library generated 18.5-18.6 million short sequences, resulting in 10.2-10.8 million clean reads. At least 52 new miRNA candidates with ≈ 21 nucleotides are perfectly matched to the M. truncatula genome. Statistical analysis on transcript abundance of the new candidate miRNAs revealed that most of them were differentially regulated by the heavy metal mercury Hg(II), with 12 miRNAs being specifically induced by Hg exposure. Additionally, we identified 201 individual miRNAs representing 63 known M. truncatula miRNA families, including 12 new conserved and one non-conserved miRNAs that have not been described before. Finally, 130 targets for 58 known (37 conserved and 21 non-conserved) miRNA families and 37 targets for 18 new M. truncatula-specific candidate miRNA families were identified by high-throughput degradome sequencing approach.


Genomics | 2010

Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant

Qin Qin Wang; Fei Liu; Xu Sheng Chen; Xiao Jie Ma; Hou Qing Zeng; Zhi Min Yang

Cotton fiber as a single-celled trichome is a biological model system for studying cell differentiation and elongation. However, the complexity of its gene expression and regulatory mechanism allows only marginal progress. Here, we report the high-throughput tag-sequencing (Tag-seq) analysis using Solexa Genome Analyzer platform on transcriptome of -2 to 1 (fiber initiation, stage I) and 2-8 (fiber elongation, stage II) days post anthesis (DPA) cotton (Gossypium hirsutum) ovules (wild type: WT; Xuzhou 142 and its mutant: fuzzless/lintless or flM, in the same background). To this end, we sequenced 3.5-3.8 million tags representing 0.7-1.0 million unique transcripts for each library (WT1, WT2, M1, and M2). After removal of low quality tags, we obtained a total of 2,973,104, 3,139,306, 2,943,654, and 3,392,103 clean sequences that corresponded to 357,852, 280,787, 372,952, and 382,503 distinct tags for WT1, WT2, M1, and M2, respectively. All clean tags were aligned to the publicly available cotton transcript database (TIGR, http://www.tigr.org). About 15% of the distinct tags were uniquely mapped to the reference genes, and 31.4% of existing genes were matched by tags. The tag mapping to the database sequences generated 23,854, 24,442, 23,497, and 19,957 annotated genes for WT1, WT2, M1, and M2 libraries, respectively. Analyses of differentially expressed genes revealed the substantial changes in gene type and abundance between the wild type and mutant libraries. Among the 20 most differentially expressed genes in WT1/M1 and WT2/M2 libraries were cellulose synthase, phosphatase, and dehydrogenase, all of which are involved in the fiber cell development. Overall, the deep-sequencing analyses demonstrate the high degree of transcriptional complexity in early developing fibers and represent a major improvement over the microarrays for analyzing transcriptional changes on a large scale.


Journal of Inorganic Biochemistry | 2009

Heavy metal-regulated new microRNAs from rice

Si Qi Huang; Jie Peng; Cheng Xiang Qiu; Zhi Min Yang

MicroRNAs (miRNAs) are a novel class of short, endogenous non-coding small RNAs that have the ability to base pair with their target mRNAs to repress their translation or induce their degradation in both plants and animals. To identify heavy metal stress-regulated novel miRNAs, we constructed a library of small RNAs from rice seedlings that were exposed to toxic levels of cadmium (Cd(2+)). Sequencing of the library and subsequent analysis revealed 19 new miRNAs representing six families. These cloned new rice miRNAs have sequence conservation neither in Arabidopsis nor in any other species. Most of the new rice miRNAs were up- or down-regulated in response to the metal exposure. On the base of sequence complementarity, a total of 34 miRNA targets were predicted, of which 23 targets are functionally annotated and the other 11 records belong to unknown proteins. Some predicted targets of miRNAs are associated with the regulation of the response to heavy metal-induced stresses. In addition to the new miRNAs, we detected nine previously reported miRNAs and 56 other novel endogenous small RNAs in rice. These findings suggest that the number of new miRNAs in rice is unsaturated and some of them may play critical roles in plant responses to environmental stresses.


Journal of Experimental Botany | 2012

Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium

Zhao Sheng Zhou; Jian Bo Song; Zhi Min Yang

MicroRNAs (miRNAs) are a distinct class of small RNAs in plants that not only regulate biological processes but also regulate response to environmental stresses. The toxic heavy metal cadmium (Cd) induces expression of several miRNAs in rapeseed (Brassica napus), but it is not known on a genome-wide scale how the expression of miRNAs and their target genes, is regulated by Cd. In this study, four small RNA libraries and four degradome libraries were constructed from Cd-treated and non-Cd-treated roots and shoots of B. napus seedlings. Using high-throughput sequencing, the study identified 84 conserved and non-conserved miRNAs (belonging to 37 miRNA families) from Cd-treated and non-treated B. napus, including 19 miRNA members that were not identified before. Some of the miRNAs were validated by RNA gel blotting. Most of the identified miRNAs were found to be differentially expressed in roots/shoots or regulated by Cd exposure. The study simultaneously identified 802 targets for the 37 (24 conserved and 13 non-conserved) miRNA families, from which there are 200, 537, and 65 targets, belonging to categories I, II, and III, respectively. In category I alone, many novel targets for miRNAs were identified and shown to be involved in plant response to Cd.


BMC Genomics | 2009

Enrichment of a set of microRNAs during the cotton fiber development.

Pieter Bas Kwak; Qin Qin Wang; Xu Sheng Chen; Cheng Xiang Qiu; Zhi Min Yang

BackgroundCotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. In addition to its industrial and agricultural importance, the fiber cell (plant trichome) also is a biological model system for exploring gene expression and regulation. Small RNAs regulate many aspects of plant growth and development. However, whether small RNAs are involved in regulation of fiber cell development is unknown.ResultsWe adopted a deep sequencing approach developed by Solexa (Illumina Inc.) to investigate global expression and complexity of small RNAs during cotton fiber initiation and development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced individually and generated more than 6-7 million short sequences, resulting in a total of over 13 million sequence reads. At least 22 conserved candidate miRNA families including 111 members were identified. Seven families make up the vast majority of expressed miRNAs in developing cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has demonstrated significant differences in expression abundance of miRNAs between the wild-type and mutant, and suggests that these differentially expressed miRNAs potentially regulate transcripts distinctly involved in cotton fiber development.ConclusionThe present study is the first to deep sequence the small RNA population of G. hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences ranging from 18~28 nt in length were detected. Our results support the importance of miRNAs in regulating the development of different cell types and indicate that identification of a comprehensive set of miRNAs in cotton fiber cells would facilitate our understanding of the regulatory mechanisms for fiber cell initiation and elongation.


Journal of Agricultural and Food Chemistry | 2008

Aluminum-Induced Cell Wall Peroxidase Activity and Lignin Synthesis Are Differentially Regulated by Jasmonate and Nitric Oxide

Yao Juan Xue; Ling Tao; Zhi Min Yang

Cassia tora is an annual legume and cultivated as a traditional medicinal herb for multiple therapies including regulation of blood pressure and blood lipid. Because of naturally occurring acidic soils in southeastern China, this plant species may possess strategies for tolerance to low pH and aluminum toxicity. In the search for the regulatory basis of biochemical response to Al, cell wall-bound peroxidases, including lignin-generated peroxidases and NADH oxidases, were investigated in the root tips of C. tora. Activities of both types of peroxidases significantly increased with Al concentrations. Analysis with native PAGE also demonstrated the strong induction of cell wall peroxidases by Al. The Al-induced increasing activities of peroxidases were closely correlated with lignin accumulation and H 2O 2 production. The biochemical effect of exogenous nitric oxide (NO) and methyl jasmonic acid (MJ) was examined to investigate signal properties and lignin synthesis under Al stress. Application of MJ at 10 microM promoted root sensitivity to Al by activating apoplastic peroxidase activity and accumulating H 2O 2 and lignin, whereas the opposite action was found for NO. The sensitivity of apoplastic peroxidases under Al stress was associated with the cross-talk of MJ and NO signals. The analysis reveals that the activity of lipoxygenase (an enzyme for MJ biosynthesis), with its transcripts increased in Al-exposed roots, was depressed by NO exposure. The effect of MJ on intracellular NO production was also investigated. It is shown that NO staining with 4,5-diaminofluorescein diacetate fluorescence was intensified by Al but was suppressed by MJ. These results suggest that NO and MJ may interplay in signaling the cell wall peroxidase activity and lignin synthesis in the roots exposed to Al.


Plant Cell and Environment | 2011

Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity.

Qi Shen; Ming Jiang; Hua Li; Li Ling Che; Zhi Min Yang

Plant heme oxygenases (HOs) regulate biosynthesis of phytochrome which accounts for photo-acceptance and -morphogenesis. Recent studies have demonstrated that plant HOs also regulate many other physiological processes including response to environmental stimuli. To elucidate the mechanism by which HOs regulate plant adaptation to heavy metal exposure, three novel HOs genes were isolated from rapeseed (Brassica napus) and their expression patterns were analysed. Alignment of deduced protein sequences revealed that the three BnHOs share high identity with their corresponding orthologos (AtHO1-3) from Arabidopsis. To investigate whether the BnHO regulates plant tolerance to Hg toxicity, we constructed B. napus transgenic plants overexpressing BnHO-1. Under Hg stress, the transgenic plants had 1.41-1.59 folds higher biomass than the untransformants. However, overexpression of BnHO-1 resulted in less accumulation of Hg in some lines of transformants than in untransformants. The transgenic plants show lower abundance of reactive oxygen species and attenuated oxidative injury compared with the untransgenic plants. We cloned the promoter sequences of BnHO-1 from B. napus. Analysis revealed that the 1119 bp fragment contains a conserved Cd responsive element (CdRE) and others responding to multiple environmental stimuli. Transient expression in tobacco leaves showed differential responses to heavy metals (Zn, Cu, Pb, Hg and Cd).

Collaboration


Dive into the Zhi Min Yang's collaboration.

Top Co-Authors

Avatar

Jian Bo Song

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhao Sheng Zhou

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hua Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Si Qi Huang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Zheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuai Gao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xian Duo Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhao Pu Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kai Guo

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge