Zhi-Peng Li
National Institute for Materials Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhi-Peng Li.
Applied Physics Letters | 2011
Zhi-Peng Li; Toshiyuki Mori; Graeme Auchterlonie; Jin Zou; John Drennan
Microstructures and segregations of dopants and associated oxygen vacancies in gadolinium-doped ceria (GDC) have been characterized by high-resolution transmission electron microscopy (HRTEM) and scanning TEM (STEM). Diffuse scattering was detected in 25 at. % GDC (25GDC) in comparison to 10GDC, which is ascribed to nanodomain formation in 25GDC. HRTEM, dark-field, and STEM Z-contrast imaging investigations all provide direct evidence for dopant segregation in doped ceria. It is illustrated that dopant cations cannot only segregate in grain interior forming larger nanodomains but also at grain boundary forming smaller ones. Detailed analyses about nanodomain formation and related dopant segregation behaviors are then elucidated.
Journal of Chemical Physics | 2011
Zhi-Peng Li; Toshiyuki Mori; Fei Ye; D. R. Ou; Jin Zou; John Drennan
The nano-domain, with short-range ordered structure, has been widely observed in rare-earth-doped ceria. Atomistic simulation has been employed to investigate the ordering structure of the nano-domain, as a result of aggregation and segregation of dopant cations and the associated oxygen vacancies in gadolinium-doped ceria. It is found that the binding energy of defect cluster increases as a function of cluster size, which provides the intrinsic driving force for the defect cluster growth. However, the ordered structures of the defect clusters are different from the chain model as previously reported. Adjacent oxygen vacancies prefer to locate along <110>/2 lattice vector, which results in a unique stable structure (isosceles triangle) formation. Such isosceles triangle structure can act as the smallest unit of cluster growth to form a symmetric dumbbell structure. This unique dumbbell structure is hence considered as a building block for the development of larger defect clusters, leading to nano-domain formation in rare-earth-doped ceria.
ACS Applied Materials & Interfaces | 2011
Zhi-Peng Li; Mori Toshiyuki; Graeme Auchterlonie; Jin Zou; Drennan John
The microstructure and local chemistry of the interface between the screen-printed La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3) (LSCF) thin film cathode and Gd-doped ceria (GDC) electrolyte substrate have been investigated. Elemental distribution analyses, by energy-dispersive X-ray spectroscopy operated in scanning transmission electron microscopy (STEM) mode, illustrate that all constituent elements in GDC and LSCF mutually diffuse across the LSCF/GDC interface, with equal diffusion length. This leads to the formation of mutual diffusion zones at the LSCF/GDC interfaces, with the resultant mixture of diffusing ions being associated with specific valence state changes, as verified by STEM electron energy loss spectroscopy analyses. Moreover, this mutual diffusion can result in microstructural changes, where superstructure formation is accompanied by enhancement of oxygen vacancy ordering at this region. Such mutual diffusion and associated microstructure evolution is considered to be detrimental to fuel cell efficiency and should be suppressed by lowering cell fabrication temperatures.
Microscopy and Microanalysis | 2011
Zhi-Peng Li; Toshiyuki Mori; Fei Ye; Ding Rong Ou; Jin Zou; John Drennan
Nanosized incubational domain was observed in 10 at.% gadolinium-doped ceria (GDC) using high-resolution transmission electron microscopy. Dislocations were extensively observed in 10 at.% GDC instead of heavily doped 25 at.% GDC. By Fast Fourier Transform and Inverse Fast Fourier Transform analysis, it was noticed that the incubational domain existing in 10 at.% GDC has different lattice spacing and orientation from the neighboring ceria matrix. Furthermore, dislocations were usually observed in the interface region between the incubational domain and the ceria matrix. Based on experimental results, the formation mechanism of dislocation associated incubational domain in lightly gadolinium-doped ceria is rationalized.
Physical Chemistry Chemical Physics | 2012
Zhi-Peng Li; Toshiyuki Mori; Jin Zou; John Drennan
Atomistic simulation based on an energy minimization technique has been carried out to investigate defect clusters of R(2)O(3) (R = La, Pr, Nd, Sm, Gd, Dy, Y, Yb) solid solutions in fluorite CeO(2). Defect clusters composed of up to six oxygen vacancies and twelve accompanied dopant cations have been simulated and compared. The binding energy of defect clusters increases as a function of the cluster size. A highly symmetric dumbbell structure can be formed by six oxygen vacancies, which is considered as a basic building block for larger defect clusters. This is also believed to be a universal vacancy structure in an oxygen-deficient fluorite lattice. Nevertheless, the accurate positions of associated dopants depend on the dopant radius. As a consequence, the correlation between dopant size and oxygen-ion conductivity has been elucidated based on the ordered defect cluster model. This study sheds light on the choice of dopants from a physical perspective, and suggests the possibility of searching for optimal solid electrolyte materials through atomistic simulations.
Physical Chemistry Chemical Physics | 2011
Zhi-Peng Li; Toshiyuki Mori; Graeme Auchterlonie; Jin Zou; John Drennan
The microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy. It was apparent that both metallic Ni and the rare-earth elements Ce/Gd in gadolinium-doped ceria can diffuse into each other with equal diffusion lengths (about 100 nm). This will lead to the existence of mutual diffusion zones at grain boundaries, accompanied by a change in the valence state of the diffusing ions, as identified by electron energy-loss spectroscopy (EELS). Such mutual diffusion is believed to be the dominant factor that gives rise to superstructure formation at grain boundaries, while a different superstructure is formed at grain interiors, as a consequence solely of the reduction of Ce(4+) to Ce(3+) during H(2) treatment. This work will enhance the fundamental understanding of microstructural evolution at the anode, correlating with advancements in sample preparation in order to improve the performance of SOFC anodes.
Physical Review B | 2011
Zhi-Peng Li; Toshiyuki Mori; Fei Ye; Ding Rong Ou; Jin Zou; John Drennan
Journal of Physical Chemistry C | 2011
Zhi-Peng Li; Toshiyuki Mori; Graeme Auchterlonie; Yanan Guo; Jin Zou; John Drennan; Masaru Miyayama
Materials Research Bulletin | 2012
Zhi-Peng Li; Toshiyuki Mori; Graeme Auchterlonie; Jin Zou; John Drennan
Journal of Physical Chemistry C | 2012
Zhi-Peng Li; Toshiyuki Mori; Fei Ye; D. R. Ou; Graeme Auchterlonie; Jin Zou; John Drennan