Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi Ping Xu is active.

Publication


Featured researches published by Zhi Ping Xu.


Nature Materials | 2010

Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk

Sinan Keten; Zhi Ping Xu; Britni Ihle; Markus J. Buehler

Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in beta-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds.


ACS Nano | 2013

Selective Ion Penetration of Graphene Oxide Membranes

Pengzhan Sun; Miao Zhu; Kunlin Wang; Minlin Zhong; Jinquan Wei; Dehai Wu; Zhi Ping Xu; Hongwei Zhu

The selective ion penetration and water purification properties of freestanding graphene oxide (GO) membranes are demonstrated. Sodium salts permeated through GO membranes quickly, whereas heavy-metal salts infiltrated much more slowly. Interestingly, copper salts were entirely blocked by GO membranes, and organic contaminants also did not infiltrate. The mechanism of the selective ion-penetration properties of the GO membranes is discussed. The nanocapillaries formed within the membranes were responsible for the permeation of metal ions, whereas the coordination between heavy-metal ions with the GO membranes restricted the passage of the ions. Finally, the penetration processes of hybrid aqueous solutions were investigated; the results revealed that sodium salts can be separated effectively from copper salts and organic contaminants. The presented results demonstrate the potential applications of GO in areas such as barrier separation and water purification.


Nature Communications | 2013

Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes

Hubiao Huang; Zhigong Song; Ning Wei; Li Shi; Yiyin Mao; Yulong Ying; Luwei Sun; Zhi Ping Xu; Xinsheng Peng

Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.


Applied Physics Letters | 2011

Mechanical and thermal transport properties of graphene with defects

Feng Hao; Daining Fang; Zhi Ping Xu

The roles of defects including monatomic vacancies and Stone-Wales dislocations in the mechanical and thermal properties of graphene are investigated here through molecular dynamics (MD) simulations. The results show that Young’s modulus of a defected graphene sheet has a gentle dependence with the concentration of defects, while the thermal conductivity is much more sensitive. Analysis based on the effective medium theory (EMT) indicates that this sensitivity originates from the scattering of phonons by defects and delocalized interaction between them, which leads to a transition from propagating to diffusive mode as the concentration increases.


ACS Nano | 2010

Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls.

Zhi Ping Xu; Markus J. Buehler

Graphene features a two-dimensional structure, where applications from electronic building blocks to reinforced composites are emerging, enabled through the utilization of its intriguing electrical, mechanical, and thermal properties. These properties are controlled by the structural makeup of graphene, which is known to display multiple morphologies that change under thermal fluctuations and variations of its geometry. However, as of now, a systematic understanding of the relationship between the conformation of graphene and its geometry remains unknown, preventing rational bottom-up design of materials, structures, and devices. Here, we present a conformational phase diagram for rectangular graphene sheets, defined by their geometry (size and aspect ratio), boundary conditions, and the environmental conditions such as supporting substrates and chemical modifications, as well as changes in temperature. We discover the occurrence of three major structural arrangements in membrane, ribbon, and scroll phases as the aspect ratio of the graphene nanoribbon increases. A theoretical and computational analysis of governing mechanisms for each conformation is provided.


Journal of Physics: Condensed Matter | 2010

Interface structure and mechanics between graphene and metal substrates: a first-principles study

Zhi Ping Xu; Markus J. Buehler

Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of critical importance in applications of graphene in integrated electronics, as thermal materials, and in electromechanical devices. Here we investigate the structure and mechanical interactions at a graphene-metal interface through density functional theory (DFT)-based calculations. We focus on copper (111) and nickel (111) surfaces adhered to a monolayer of graphene, and find that their cohesive energy, strength and electronic structure correlate directly with their atomic geometry. Due to the strong coupling between open d-orbitals, the nickel-graphene interface has a much stronger cohesive energy with graphene than copper. We also find that the interface cohesive energy profile features a well-and-shoulder shape that cannot be captured by simple pair-wise models such as the Lennard-Jones potential. Our results provide a detailed understanding of the interfacial properties of graphene-metal systems, and help to predict the performance of graphene-based nanoelectronics and nanocomposites. The availability of structural and energetic data of graphene-metal interfaces could also be useful for the development of empirical force fields for molecular dynamics simulations.


Expert Opinion on Drug Delivery | 2009

Layered double hydroxide nanoparticles in gene and drug delivery.

Katharina Ladewig; Zhi Ping Xu; Gao Qing Lu

Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.


Journal of Controlled Release | 2008

Subcellular compartment targeting of layered double hydroxide nanoparticles

Zhi Ping Xu; Marcus Niebert; Katharina Porazik; Tara L. Walker; Helen M. Cooper; Anton P. J. Middelberg; Peter P. Gray; Perry F. Bartlett; Gao Qing Lu

Current investigations show that layered double hydroxide (LDH) nanoparticles have high potential as effective non-viral agents for cellular drug delivery due to their low cytotoxicity, good biocompatibility, high drug loading, control of particle size and shape, targeted delivery and drug release control. Two types of Mg(2)Al-LDH nanoparticles with fluorescein isothiocyanate (FITC) were controllably prepared. One is morphologically featured as typical hexagonal sheets (50-150 nm laterally wide and 10-20 nm thick), while the other as typical rods (30-60 nm wide and 100-200 nm long). These LDH(FTIC) nanoparticles are observed to immediately transfect into different mammalian cell lines. We found that internalized LDH(FITC) nanorods are quickly translocated into the nucleus while internalized LDH(FITC) nanosheets are retained in the cytoplasm. Inhibition experiments show that the cellular uptake is a clathrin-mediated time- and concentration-dependent endocytosis. Endosomal escape of LDH(FITC) nanoparticles is suggested to occur through the deacidification of LDH nanoparticles. Since quick nuclear targeting of LDH(FITC) nanorods requires an active process, and although the exact mechanism is yet to be fully understood, it probably involves an active transport via microtubule-mediated trafficking processes. Targeted addressing of two major subcellular compartments by simply controlling the particle morphology/size could find a number of applications in cellular biomedicine.


ACS Applied Materials & Interfaces | 2014

Understanding Water Permeation in Graphene Oxide Membranes

Ning Wei; Xinsheng Peng; Zhi Ping Xu

Water transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore water permeation in graphene oxide membranes using atomistic simulations and theoretical analysis, by considering flow through the interlayer gallery, expanded channels such as wrinkles of interedge spaces, and pores within the sheet. We find that, although flow enhancement can be established by nanoconfinement, fast water transport through pristine graphene channels is prohibited by a prominent side-pinning effect from capillaries formed within oxidized regions. We then discuss several flow enhancement mechanisms through the porous microstructures of graphene oxide membranes. These understandings are integrated into a complete picture to understand water permeation through the layer-by-layer and porous microstructure and can guide rational design of functional membranes for energy and environmental applications.


ACS Nano | 2009

Nanoengineering Heat Transfer Performance at Carbon Nanotube Interfaces

Zhi Ping Xu; Markus J. Buehler

Carbon nanotubes are superb materials for nanoscale thermal management and phononic devices applications, due to their extremely high thermal conductivity (3000-6600 W/mK) and quasi-one-dimensional geometry. However, the presence of interfaces between individual carbon nanotubes as found widely in nanocomposites, nanoelectronics, and nanodevices severely limits their performance for larger scale applications. Solving this issue requires a deep understanding of the heat transfer mechanism at this nanoscale interface between low-dimensional structures, where conventional models developed for interfaces in bulk materials do not apply. Here we address this challenge through a bottom-up approach based on atomistic simulations. We demonstrate that the huge thermal resistance of carbon nanotube junctions can be significantly improved through modifying the molecular structure at the interface to enhance both the matching of phonon spectra and phonon mode coupling. Specifically, two approaches based on polymer wrapping and metal coatings are investigated here and have shown to improve both the structural stability and interfacial thermal conductivity of carbon nanotube junctions. By properly designing the interface molecular structure between individual carbon nanotubes, significant performance gains up to a factor of 4 can be achieved. These results pave the way for future designs of thermal management networks and phononic devices with thermally transparent and structurally stable interfaces.

Collaboration


Dive into the Zhi Ping Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gao Qing Lu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Li Li

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyi Gu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Zi Gu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengping Hao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge