Zhi-Qiang Huang
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhi-Qiang Huang.
Journal of Gastrointestinal Surgery | 2004
J. Pablo Arnoletti; Donald J. Buchsbaum; Zhi-Qiang Huang; Ashley Hawkins; Muhamad B. Khazaeli; Matthias H. Kraus; Selwyn M. Vickers
We previously demonstrated that pancreatic adenocarcinoma BxPC-3 xenografts display resistance to treatment with Erbitux, gemcitabine, and radiation, whereas MIA PaCa-2 xenografts are highly sensitive to the same therapy. Here, we elucidate in vitro mechanisms that may explain the observed differential response of epidermal growth factor receptor (EGFR) expressing pancreatic adenocarcinoma xenografts to Erbitux-based combination therapy in vivo. MIA PaCa-2 and BxPC-3 protein lysates were probed with antibodies to EGFR, ErbB2, ErbB3, and ErbB4. Constitutive ErbB3 activity was visualized by immunoblot analysis using anti-phosphotyrosine antibodies and receptor-specific immunoprecipitates. erbB2 and erbB3 gene expression in both cell lines was quantified with real-time polymerase chain reaction. Erbitux-induced internalization of EGFR was determined by flow cytometry following Erbitux treatment for different incubation times at 0°C and 37°C. MIA PaCa-2 and BxPC-3 protein extracts were also probed with anti-phospho-mitogen-activated protein kinase antibody after stimulation with EGF and in the presence of Erbitux. Although both cell lines expressed EGFR and ErbB2 protein, ErbB3 protein was selectively expressed by BxPC-3 cells, where it also showed evidence of constitutive phosphorylation. There was a 10-fold increase of erbB3 transcript levels in BxPC-3 cells compared with MIA PaCa-2. ErbB4 protein was not detectable in either cell line. Erbitux mediated EGFR internalization in MIA PaCa-2 cells after 2 hours of incubation, whereas it did not promote EGFR internalization in BxPC-3 cells. Likewise, EGF-dependent phosphorylation of MAPK p44/42 was blocked by Erbitux treatment in MIAPaCa-2 but not BxPC-3 cells. Erbitux selectively interfered with EGF-induced MAPK activation in MIA PaCa-2 but not BxPC-3 cells. Persistent MAPK activation and impaired in vitro internalization of EGFR by BxPC-3 pancreatic cancer cells may be due to constitutive ErbB3 signaling, facilitated by heterodimerization with EGFR, which may explain resistance to Erbitux-based combination therapy in vivo.
Clinical Cancer Research | 2007
Leo Christopher DeRosier; Donald J. Buchsbaum; Patsy G. Oliver; Zhi-Qiang Huang; Jeffrey C. Sellers; William E. Grizzle; Wenquan Wang; Tong Zhou; Kurt R. Zinn; Joshua W. Long; Selwyn M. Vickers
Purpose: Evaluate the response of human pancreatic cancer cell lines and orthotopic tumors to TRA-8, an agonistic antibody to death receptor 5, in combination with irinotecan (CPT-11). Experimental Design: MIA PaCa-2 and S2VP10 cells were treated with TRA-8 and/or CPT 11. Cell viability was determined by ATP assay. JC-1 mitochondrial depolarization and Annexin V assays confirmed cell death by apoptosis. Immunoblotting was used to evaluate protein changes. MIA PaCa-2 cells were injected into the pancreas of severe combined immunodeficient mice. Mice underwent abdominal ultrasound to quantitate tumor size before and after treatment with twice weekly injections of 200 μg TRA-8 and/or 25 mg/kg CPT-11 for one or two treatment cycles, each lasting 2 weeks. Results: MIA PaCa-2 cells were more sensitive to TRA-8 and showed additive cytotoxicity, whereas S2VP10 cells showed synergistic cytotoxicity when treated with TRA-8 and CPT-11. Cell death occurred via apoptosis with increased cleavage of caspase-3, caspase-8, and caspase-9 and proapoptotic proteins Bid and poly(ADP)ribose polymerase after combination treatment compared with either agent alone. XIAP and Bcl-XL inhibitors of apoptosis were down-regulated. After a single cycle of in vivo combination therapy, tumor sizes had diminished significantly (P < 0.001) at 8 days posttreatment compared with no treatment, CPT-11, and TRA-8; and there was a 50-day increase in survival with combination treatment over untreated controls (P = 0.0002), 30 days over TRA-8, and a 36-day increase over CPT-11 monotherapy (P = 0.0003). With two cycles of TRA-8/CPT-11 treatment, mean survival time increased significantly (P < 0.001) to 169 days versus untreated controls, TRA-8 or CPT-11 (76, 121, or 108 days, respectively). Conclusions: Combination TRA-8 and CPT-11 therapy produced enhanced cytotoxicity and survival in the MIA PaCa-2 orthotopic model of pancreatic cancer.
Journal of Surgical Research | 2003
Zhi-Qiang Huang; Donald J. Buchsbaum; Kevin P. Raisch; James A. Bonner; Kirby I. Bland; Selwyn M. Vickers
BACKGROUNDnPancreatic cancer remains a devastating disease, with 95% of all patients diagnosed with the disease dying within 2 years. The combined therapy using Erbitux, gemcitabine, and radiation caused complete tumor regression using a nude mouse model inoculated with pancreatic MiaPaCa-2 cells but only a delay in tumor growth with BxPC-3. We investigated the effect of prolonged Erbitux treatment to the sensitivity to gemcitabine and/or radiation and the epidermal growth factor receptor (EGFR) signal transduction pathway.nnnMETHODSnMiaPaCa-2 and BxPC-3 cells were cultured with or without Erbitux for 6 weeks. Cells were then treated with gemcitabine and/or radiation, harvested 48 h after treatment, and counted. Differences in EGFR expression after exposure to Erbitux were analyzed by FACS. Internalization rates of EGFR induced by Erbitux on these cell lines were determined using 125I-EGF binding assay after removal of Erbitux by acidic wash. Cell lysates were harvested after cells were stimulated with EGF, FGF, or IGF-1 respectively, and EGFR was immunoprecipitated using Erbitux. Samples were separated using SDS-PAGE and transferred to PVDF membrane. The membranes were probed with antibody against human growth factor receptor binding protein (Grb2) to detect the association of this Ras-MAPK upstream adaptor protein to EGFR. Cell lysates were also separated with SDS-PAGE and probed with rabbit anti-human PARP after samples were transferred to PVDF membrane. Expression of BAX and Bcl-(XL) were probed in the cells treated with or without Erbitux.nnnRESULTSnProliferation assays indicated that prolonged exposure to Erbitux increased the sensitivities of MiaPaCa-2 to gemcitabine and radiation therapy (41 +/- 16% vs 52 +/- 9% for gemcitation, 28 +/- 9 vs 39 +/- 9% for combination; P = 0.015) but not for BxPC-3. FACS analysis showed that the expressed EGFR level decreased by about 42% on MiaPaCa 2 whereas no loss was seen on BxPC-3. Expression of BAX was upregulated on MiaPaCa-2. Poly (ADP-ribose) polymerase cleavage indicated the killing was mediated by apoptosis. Immunoblots showed that Grb2 was co-immunoprecipitated with EGFR after EGF stimulation. Incubation with Erbitux blocked Grb2 binding in MiaPaCa-2 but not BxPC 3. FGF transactivated EGFR down stream Ras-MAPK in the presence or absence of Erbitux. Internalization of EGFR induced by Erbitux did not differ between MiaPaCa-2 and BxPC-3.nnnCONCLUSIONSn1) Association of Grb2 to EGFR in BxPC-3 induced by EGF in the presence of Erbitux indicates an alternate pathway of Ras-MAPK activation, which may be related with the tumor resistance to treatment; 2) transactivation of EGFR downstream Ras-MAPK pathway by FGF contributes the resistance to treatment; and 3) downregulation of EGFR may increase the response to therapy.
Journal of Gastrointestinal Surgery | 2002
Selwyn M. Vickers; Zhi-Qiang Huang; Lee Ann MacMillan-Crow; Jessica S. Greendorfer; John A. Thompson
Pancreatic adenocarcinoma continues to be a devastating tumor (28,000 new cases per year in the United States; 10% 2-year survival). Pancreatic adenocarcinoma frequently (90% of the time) overexpresses fibroblast growth factor ligands (FGF-1 and FGF-2) and alternatively spliced high-affinity receptors (FGFR-lß) (FGFR-lct was previously found in normal pancreatic tissue). To study the significance of this observation in vitro, PANC-1 cells were stably transfected via the pMEXneo vector containing FGFR-la (PANC-la) or FGFR-lß (PANC-lß) isoforms. Cells were treated with 1 mg/ml of 5-fluorouracil. Cells were evaluated for growth inhibition, apoptosis (propidium iodide staining and flow cytometry, caspase 3 activation) and for Bcl-xL/BAX expression (by Western blot analysis). In vivo, 7 X 106 cells of each isoform were injected into nude Balb/c mice for xenograft formation (N = 10). Compared to PANC-lß (9%) in vitro, 5-fluorouracil-induced death was significantly (P < 0.05) increased in PANC-la (20%) at 24 hours. Increased cell death in PANC-la was mediated by activated caspase 3 and was correlated with decreased expression of Bcl-xL/BAX. In vivo, PANC-lß readily demonstrated formation of tumor xenograft at 2 weeks, whereas PANC-la did not form tumors. Alternative splicing of FGFR-1 to the ß isoform appears to correlate with pancreatic adenocarcinoma cell growth in vivo and resistance to chemotherapy. Inhibition of FGFR-1 splicing or overexpression of FGFR-la inhibits pancreatic adenocarcinoma cell growth in vivo and restores cytotoxic responses to chemotherapy, thereby suggesting the basis of rational interventional strategies for this devastating tumor.
Current Pharmaceutical Design | 2011
Zhi-Qiang Huang; Ashok K. Saluja; Vikas Dudeja; Selwyn M. Vickers; Donald J. Buchsbaum
Human pancreatic cancer remains a highly malignant disease with almost similar incidence and mortality despite extensive research. Many targeted therapies are under development. However, clinical investigation showed that single targeted therapies and most combined therapies were not able to improve the prognosis of this disease, even though some of these therapies had excellent anti-tumor effects in pre-clinical models. Cross-talk between cell proliferation signaling pathways may be an important phenomenon in pancreatic cancer, which may result in cancer cell survival even though some pathways are blocked by targeted therapy. Pancreatic cancer may possess different characteristics and targets in different stages of pathogenesis, maintenance and metastasis. Sensitivity to therapy may also vary for cancer cells at different stages. The unique pancreatic cancer structure with abundant stroma creates a tumor microenvironment with hypoxia and low blood perfusion rate, which prevents drug delivery to cancer cells. In this review, the most commonly investigated targeted therapies in pancreatic cancer treatment are discussed. However, how to combine these targeted therapies and/or combine them with chemotherapy to improve the survival rate of pancreatic cancer is still a challenge. Genomic and proteomic studies using pancreatic cancer samples obtained from either biopsy or surgery are recommended to individualize tumor characters and to perform drug sensitivity study in order to design a tailored therapy with minimal side effects. These studies may help to further investigate tumor pathogenesis, maintenance and metastasis to create cellular expression profiles at different stages. Integration of the information obtained needs to be performed from multiple levels and dimensions in order to develop a successful targeted therapy.
Immunotherapy | 2009
Zhi-Qiang Huang; Donald J. Buchsbaum
Human pancreatic cancer is a malignant disease with almost equal incidence and mortality. Effective diagnostic and therapeutic strategies are still urgently needed to improve its survival rate. With advances in structural and functional genomics, recent work has focused on targeted molecular therapy using monoclonal antibodies. This review summarizes the target molecules on the tumor cell surface and normal tissue stroma, which are related to pancreatic cancer oncogenesis, tumor growth or resistance to chemotherapy, as well as molecules involved in regulating inflammation and host immunoresponses. Targeted molecules include cell-surface receptors, such as the EGF receptor, HER2, death receptor 5 and IGF-1 receptor. Effects of monoclonal antibodies against these target molecules alone or in combination with chemotherapy, small-molecule signal transduction inhibitors, or radiation therapy are also discussed. Also discussed are the use of toxin or radioisotope conjugates, and information relating to the use of these targeting agents in pancreatic cancer clinical trials. Although targeted molecular therapy with monoclonal antibodies has made some progress in pancreatic cancer treatment, especially in preclinical studies, its clinical application to improve the survival rate of pancreatic cancer patients requires further investigation.
Journal of Gastrointestinal Surgery | 2006
Leo Christopher DeRosier; Zhi-Qiang Huang; Jeffrey C. Sellers; Donald J. Buchsbaum; Selwyn M. Vickers
Gemcitabine is a first line agent for pancreatic cancer, but yields minimal survival benefit. This study evaluated in vitro and in vivo effects of a monoclonal antibody (TRA-8) to human death receptor 5, combined with gemcitabine, using two human pancreatic cancer cell lines, S2VP10 and MIA PaCa-2. A subcutaneous model of pancreatic cancer was employed to test in vivo efficacy. S2VP10 and MIA PaCa-2 cells were treated with varying doses of gemcitabine and TRA-8. Cell viability and apoptosis were determined with an adenosine triphosphate assay and annexin V staining, respectively. Mitochondrial membrane destabilization was evaluated with fluorescence-activated cell sorting analysis of JC-1 stained cells. Caspase activation was evaluated by Western blot analysis. MIA PaCa-2 subcutaneous xenografts in athymic nude mice were evaluated for response to treatment with 200 µg of TRA-8 (intraperitoneal on days 9, 13, 16, 20, 23, and 27 postimplant) and 120 mg/kg gemcitabine (I.P. on days 10, 17, and 24). Tumor growth was measured with calipers. MIA PaCa-2 and S2VP10 cells receiving combination treatment with TRA-8 and gemcitabine demonstrated enhanced cytotoxicity, annexin V staining, and mitochondrial destabilization compared to either agent alone. Combination treatment produced enhanced caspase-3 and -8 activation in both cell lines compared with either agent alone. In vivo studies demonstrated mean subcutaneous tumor surface area (produce of two largest diameters) doubling times of 38 days untreated, 32 days gemcitabine, 49 days TRA-8, and 64 days combination treatment. TRA-8 is an apoptosis-inducing agonistic monoclonal antibody that produced synergistic cytotoxicity in combination with gemcitabine in vitro through enhanced caspase activation. These findings, with substantial inhibition of tumor growth in a mouse pancreatic cancer xenograft model receiving combination therapy, are encouraging for anti-death receptor therapy in the treatment of pancreatic cancer.
Free Radical Biology and Medicine | 2001
Selwyn M. Vickers; Lee Ann MacMillan-Crow; Zhi-Qiang Huang; John A. Thompson
Previous immunohistochemical studies have demonstrated enhanced appearance of FGF-1 and nitrotyrosine, a footprint of reactive nitrogen species peroxynitrite (ONOO(-)), in human pancreatic adenocarcinoma. We have examined the consequences of constitutive exposure to FGF-1 in nontumorigenic rat ductal epithelial cells (ARIP). ARIP cells were transduced with either a secreted chimera of FGF-1, ARIP(FGF-1), or a control plasmid, 65 RIP(betag). These cells were evaluated for alteration in growth and morphology, responses to ONOO(-) (protein tyrosine nitration/phosphorylation), and in vivo tumor formation. ARIP(FGF-1) cells, in contrast to 65 RIP(betag), demonstrated a transformed morphology, a 2-fold increased growth rate, and enhanced protein tyrosine phosphorylation. Treatment with 150 microM ONOO(-) resulted in 86 and 7% (p <.01) death of ARIP(betag) and ARIP(FGF-1), respectively. Exposure of 65 RIP(betag) cells to ONOO(-) enhanced tyrosine phosphorylation and tyrosine nitration of several polypeptides. Cell signaling by FGF-1 enhanced both phosphorylation and nitration of tyrosine residues in target proteins modified by ONOO(-). ARIP(betag) cells failed to exhibit tumor formation in nude mice, but at d 7 in vivo cells were TUNEL and nitrotyrosine positive and FGF-1 negative. ARIP(FGF-1) cells readily formed tumor nodules, exhibiting features of pancreatic adenocarcinoma and demonstrating FGF-1-positive, nitrotyrosine-positive, and TUNEL-negative epithelium. These results suggest an interdependent role between FGF-1 and ONOO(-) during the development and progression of pancreatic adenocarcinoma.
Journal of The American College of Surgeons | 2005
Leo Christopher DeRosier; Donald J. Buchsbaum; Jeffrey C. Sellers; Zhi-Qiang Huang; Patsy G. Oliver; Selwyn M. Vickers
Advances in Pancreatic Cancer Treatment | 2011
Zhi-Qiang Huang; Donald J Buchsbaum