Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Rong Yang is active.

Publication


Featured researches published by Zhi-Rong Yang.


Hypertension | 2006

Postischemic Brain Injury Is Exacerbated in Mice Lacking the Kinin B2 Receptor

Chun-Fang Xia; Robert S. Smith; Bo Shen; Zhi-Rong Yang; Cesar V. Borlongan; Lee Chao; Julie Chao

Kallikrein cleaves low molecular weight kininogen to generate vasoactive kinins, which bind to the kinin B2 receptor, triggering a host of biological effects. Kallikrein gene delivery has been shown previously to reduce ischemia/reperfusion-induced cerebral infarction. In this study, we tested the hypothesis that the kinin B2 receptor plays a protective role in ischemic brain injury using kinin B2 receptor gene knockout (B2R-KO) mice subjected to middle cerebral artery occlusion (MCAO). The mortality rate and neurological deficit scores of B2R-KO mice (n=48) after MCAO were significantly increased compared with wild-type (WT) mice (n=40) when examined over a 14-day period. In addition, the infarct volume in B2R-KO mice was significantly larger than in WT mice at days 1 and 3 after MCAO. Similarly, apoptotic cells, detected by TUNEL labeling counterstained with propidium iodide, and caspase-3 activity in the ischemic brain increased significantly in B2R-KO mice at days 1 and 3 after MCAO. Furthermore, the accumulation of neutrophils in the ischemic brain of B2R-KO mice after MCAO increased when compared with WT mice and was associated with elevated tumor necrosis factor &agr; expression. These alterations in B2R-KO mice correlated with decreased NO levels, Akt, and glycogen synthase kinase-3&bgr; phosphorylation and increased nicotinamide-adenine dinucleotide oxidase activity. These results indicate that the kinin B2 receptor promotes survival and protects against brain injury by suppression of apoptosis and inflammation induced by ischemic stroke.


Hypertension | 2008

Tissue Kallikrein Elicits Cardioprotection by Direct Kinin B2 Receptor Activation Independent of Kinin Formation

Julie Chao; Hang Yin; Lin Gao; Makoto Hagiwara; Bo Shen; Zhi-Rong Yang; Lee Chao

Tissue kallikrein exerts various biological functions through kinin formation with subsequent kinin B2 receptor activation. Recent studies showed that tissue kallikrein directly activates kinin B2 receptor in cultured cells expressing human kinin B2 receptor. In the present study, we investigated the role of tissue kallikrein in protection against cardiac injury through direct kinin B2 receptor activation using kininogen-deficient Brown Norway Katholiek rats after acute myocardial infarction. Tissue kallikrein was injected locally into the myocardium of Brown Norway Katholiek rats after coronary artery ligation with and without coinjection of icatibant (a kinin B2 receptor antagonist) and N&ohgr;-nitro-l-arginine methylester (an NO synthase inhibitor). One day after myocardial infarction, tissue kallikrein treatment significantly improved cardiac contractility and reduced myocardial infarct size and left ventricle end diastolic pressure in Brown Norway Katholiek rats. Kallikrein attenuated ischemia-induced apoptosis and monocyte/macrophage accumulation in the ischemic myocardium in conjunction with increased NO levels and reduced myeloperoxidase activity. Icatibant and N&ohgr;-nitro-l-arginine methylester abolished kallikrein’s effects, indicating a kinin B2 receptor NO-mediated event. Moreover, inactive kallikrein had no beneficial effects in cardiac function, myocardial infarction, apoptosis, or inflammatory cell infiltration after myocardial infarction. In primary cardiomyocytes derived from Brown Norway Katholiek rats under serum-free conditions, active, but not inactive, kallikrein reduced hypoxia/reoxygenation-induced apoptosis and caspase-3 activity, and the effects were mediated by kinin B2 receptor/nitric oxide formation. This is the first study to demonstrate that tissue kallikrein directly activates kinin B2 receptor in the absence of kininogen to reduce infarct size, apoptosis, and inflammation and improve cardiac performance of infarcted hearts.


American Journal of Physiology-renal Physiology | 2008

Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress

Makoto Hagiwara; Grant Bledsoe; Zhi-Rong Yang; Robert S. Smith; Lee Chao; Julie Chao

Intermedin (IMD) is a newly discovered peptide related to calcitonin gene-related peptide and adrenomedullin, and has been shown to reduce blood pressure and reactive oxygen species formation in vivo. In this study, we determined whether IMD exerts vascular and renal protection in DOCA-salt hypertensive rats by intravenous injection of adenovirus harboring the human IMD gene. Expression of human IMD was detected in the rat kidney via immunohistochemistry. IMD administration significantly lowered blood pressure, increased urine volume, and restored creatinine clearance. IMD also dramatically decreased superoxide formation and media thickness in the aorta. Vascular injury in the kidney was reduced by IMD gene delivery as evidenced by the prevention of glomerular and peritubular capillary loss. Moreover, IMD lessened morphological damage of the renal tubulointerstitium and reduced glomerular injury and hypertrophy. Attenuation of inflammatory cell accumulation in the kidney by IMD was accompanied by inhibition of p38MAPK activation and intercellular adhesion molecule 1 expression. In addition, IMD gene transfer resulted in a marked decline in myofibroblast and collagen accumulation in association with decreased transforming growth factor-beta1 levels. Furthermore, IMD increased nitric oxide excretion in the urine and lowered the amount of lipid peroxidation. These results demonstrate that IMD is a powerful renal protective agent with pleiotropic effects by preventing endothelial cell loss, kidney damage, inflammation, and fibrosis in hypertensive DOCA-salt rats via inhibition of oxidative stress and proinflammatory mediator pathways.


Current Eye Research | 1996

KALLISTATIN IN HUMAN OCULAR TISSUES : REDUCED LEVELS IN VITREOUS FLUIDS FROM PATIENTS WITH DIABETIC RETINOPATHY

Jian Xing Ma; Lowrey P. King; Zhi-Rong Yang; Rosalie K. Crouch; Lee Chao; Julie Chao

PURPOSE Kallistatin is a serine proteinase inhibitor, which binds to tissue kallikrein and inhibits its proteolytic activity. This study is to determine the expression, cellular localization and the potential function of kallistatin in the eye. METHODS Tissue kallikrein-kallistatin complex formation was performed to detect the kallikrein-binding activity in ocular tissues. Immunoreactive kallistatin was detected and quantified by an enzyme-linked immunosorbent assay using polyclonal antibody specific to human kallistatin. In situ hybridization histochemistry was employed to localize the kallistatin mRNA in human eyes using an antisense riboprobe of kallistatin. RESULTS We have identified active kallistatin in the cornea, ciliary body, sclera, choroid, optic nerve, retina, vitreous and aqeous fluids. Kallistatin binds to tissue kallikrein and forms an SDS-stable complex. Immunoreactive kallistatin was identified in these tissues. Linear dose-dependent curves of the tissue extracts of the retina and choroid are parallel to that of purified human kallistatin, suggesting their immunological identity. The kallistatin mRNA was identified in the ciliary muscle, lens epithelial cells, all the layers of retina cells, optic nerve, choroid and vascular endothelial cells. These cells were not stained by the sense riboprobe under the same conditions, indicating the specificity of the hybridization. We also compared immunoreactive kallistatin levels in vitreous fluids from 18 patients with diabetic retinopathy and 17 non-diabetic subjects. The results show that diabetic subjects have significantly lower kallistatin levels (233.0 +/- 14.6 ng/mg protein) compared to non-diabetic subjects (334.1 +/- 26.9 ng/mg protein). CONCLUSIONS Kallistatin is produced endogenously in the eye and the decrease in the vitreous kallistatin levels may be involved in diabetic retinopathy.


Molecular and Cellular Biochemistry | 2013

Kallistatin antagonizes Wnt/β-catenin signaling and cancer cell motility via binding to low-density lipoprotein receptor-related protein 6

Jingmei Zhang; Zhi-Rong Yang; Pengfei Li; Grant Bledsoe; Lee Chao; Julie Chao

Kallistatin, a plasma protein, exerts pleiotropic effects in inhibiting angiogenesis, inflammation and tumor growth. Canonical Wnt signaling is the primary pathway for oncogenesis in the mammary gland. In this study, we demonstrate that kallistatin bound to the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), thus, blocking Wnt/β-catenin signaling and Wnt-mediated growth and migration in MDA-MB-231 breast cancer cells. Kallistatin inhibited Wnt3a-induced proliferation, migration, and invasion of cultured breast cancer cells. Moreover, kallistatin was bound to LRP6 in breast cancer cells, as identified by immunoprecipitation followed by western blot. Kallistatin suppressed Wnt3a-mediated phosphorylation of LRP6 and glycogen synthase kinase-3β, and the elevation of cytosolic β-catenin levels. Furthermore, kallistatin antagonized Wnt3a-induced expression of c-Myc, cyclin D1, and vascular endothelial growth factor. These findings indicate a novel role of kallistatin in preventing breast tumor growth and mobility by direct interaction with LRP6, leading to blockade of the canonical Wnt signaling pathway.


Experimental Cell Research | 2015

Kallistatin inhibits TGF-β-induced endothelial-mesenchymal transition by differential regulation of microRNA-21 and eNOS expression.

Youming Guo; Pengfei Li; Grant Bledsoe; Zhi-Rong Yang; Lee Chao; Julie Chao

Kallistatin, an endogenous protein, consists of two structural elements: active site and heparin-binding domain. Kallistatin exerts beneficial effects on fibrosis by suppressing transforming growth factor (TGF)-β synthesis in animal models. TGF-β is the most potent inducer of endothelial-mesenchymal transition (EndMT), which contributes to fibrosis and cancer. MicroRNA (miR)-21 is an important player in organ fibrosis and tumor invasion. Here we investigated the potential role of kallistatin in EndMT via modulation of miR-21 in endothelial cells. Human kallistatin treatment blocked TGF-β-induced EndMT, as evidenced by morphological changes as well as increased endothelial and reduced mesenchymal marker expression. Kallistatin also inhibited TGF-β-mediated reactive oxygen species (ROS) formation and NADPH oxidase expression and activity. Moreover, kallistatin antagonized TGF-β-induced miR-21 and Snail1 synthesis, Akt phosphorylation, NF-κB activation, and matrix metalloproteinase 2 (MMP2) synthesis and activation. Kallistatin via its heparin-binding site blocked TGF-β-induced miR-21, Snail1 expression, and ROS formation, as wild-type kallistatin, but not heparin-binding site mutant kallistatin, exerted the effect. Conversely, kallistatin through its active site stimulated the synthesis of endothelial nitric oxide synthase (eNOS), sirtuin 1 (Sirt1) and forkhead box O1 (FoxO1); however, these effects were blocked by genistein, a tyrosine kinase inhibitor. This is the first study to demonstrate that kallistatins heparin-binding site is crucial for preventing TGF-β-induced miR-21 and oxidative stress, while its active site is key for stimulating the expression of antioxidant genes via interaction with an endothelial surface tyrosine kinase. These findings reveal novel mechanisms of kallistatin in protection against fibrosis and cancer by suppressing EndMT.


Immunology | 2014

Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis

Pengfei Li; Grant Bledsoe; Zhi-Rong Yang; Hongkuan Fan; Lee Chao; Julie Chao

Kallistatin, a plasma protein, has been shown to exert multi‐factorial functions including inhibition of inflammation, oxidative stress and apoptosis in animal models and cultured cells. Kallistatin levels are reduced in patients with sepsis and in lipopolysaccharide (LPS)‐induced septic mice. Moreover, transgenic mice expressing kallistatin are more resistant to LPS‐induced mortality. Here, we investigated the effects of human kallistatin on organ injury and survival in a mouse model of polymicrobial sepsis. In this study, mice were injected intravenously with recombinant kallistatin (KS3, 3 mg/kg; or KS10, 10 mg/kg body weight) and then rendered septic by caecal ligation and puncture 30 min later. Kallistatin administration resulted in a > 10‐fold reduction of peritoneal bacterial counts, and significantly decreased serum tumour necrosis factor‐α, interleukin‐6 and high mobility group box‐1 (HMGB1) levels. Kallistatin also inhibited HMGB1 and toll‐like receptor‐4 gene expression in the lung and kidney. Administration of kallistatin attenuated renal damage and decreased blood urea nitrogen and serum creatinine levels, but increased endothelial nitric oxide synthase and nitric oxide levels in the kidney. In cultured endothelial cells, human kallistatin via its heparin‐binding site inhibited HMGB1‐induced nuclear factor‐κB activation and inflammatory gene expression. Moreover, kallistatin significantly reduced apoptosis and caspase‐3 activity in the spleen. Furthermore, kallistatin treatment markedly improved the survival of septic mice by 23% (KS3) and 41% (KS10). These results indicate that kallistatin is a unique protecting agent in sepsis‐induced organ damage and mortality by inhibiting inflammation and apoptosis, as well as enhancing bacterial clearance in a mouse model of polymicrobial sepsis.


Experimental Cell Research | 2016

Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis.

Pengfei Li; Youming Guo; Grant Bledsoe; Zhi-Rong Yang; Lee Chao; Julie Chao

Kallistatin is an endogenous protein that regulates differential signaling pathways and biological functions. Our previous studies showed that kallistatin gene therapy inhibited angiogenesis, tumor growth and metastasis in mice, and kallistatin protein suppressed Wnt-mediated growth, migration and invasion by blocking Wnt/β-catenin signaling pathway in breast cancer cells. In this study, we show that kallistatin reduced cell viability, and increased apoptotic cell death and caspase-3 activity in MDA-MB-231 breast cancer cells. Kallistatin also induced cancer cell autophagy, as evidenced by increased LC3B levels and elevated Atg5 and Beclin-1 expression; however, co-administration of Wnt or PPARγ antagonist GW9662 abolished these effects. Moreover, kallistatin via its heparin-binding site antagonized Wnt3a-induced cancer cell proliferation and increased PPARγ expression. Kallistatin inhibited oncogenic miR-21 synthesis associated with reduced Akt phosphorylation and Bcl-2 synthesis, but increased BAX expression. Kallistatin via PKC-ERK activation reduced miR-203 levels, leading to increased expression of suppressor of cytokine signaling 3 (SOCS3), a tumor suppressor. Conversely, kallistatin stimulated expression of the tumorigenic suppressors miR-34a and p53. Kallistatins active site is essential for suppressing miR-21 and miR-203, and stimulating miR-34a and SOCS3 expression. This is the first study to demonstrate that kallistatins heparin-binding site is essential for inhibiting Wnt-mediated effects, and its active site plays a key role in regulating miR-21, miR-203, miR-34a and SOCS3 synthesis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in inducing apoptosis and autophagy in breast cancer cells, thus inhibiting tumor progression by regulation of Wnt/PPARγ signaling, as well as miR-21, miR-203 and miR-34a synthesis.


Critical Care | 2015

Kallistatin treatment attenuates lethality and organ injury in mouse models of established sepsis

Pengfei Li; Youming Guo; Grant Bledsoe; Zhi-Rong Yang; Hongkuan Fan; Lee Chao; Julie Chao

IntroductionKallistatin levels in the circulation are reduced in patients with sepsis and liver disease. Transgenic mice expressing kallistatin are resistant to lipopolysaccharide (LPS)-induced mortality. Here, we investigated the effect of kallistatin on survival and organ damage in mouse models of established sepsis.MethodsMice were rendered septic by cecal ligation and puncture (CLP), or endotoxemic by LPS injection. Recombinant human kallistatin was administered intravenously six hours after CLP, or intraperitoneally four hours after LPS challenge. The effect of kallistatin treatment on organ damage was examined one day after sepsis initiation, and mouse survival was monitored for four to six days.ResultsHuman kallistatin was detected in mouse serum of kallistatin-treated mice. Kallistatin significantly reduced CLP-induced renal injury as well as blood urea nitrogen, serum creatinine, interleukin-6 (IL-6), and high mobility group box-1 (HMGB1) levels. In the lung, kallistatin decreased malondialdehyde levels and HMGB1 and toll-like receptor-4 (TLR4) synthesis, but increased suppressor of cytokine signaling-3 (SOCS3) expression. Moreover, kallistatin attenuated liver injury, serum alanine transaminase (ALT) levels and hepatic tumor necrosis factor-α (TNF-α) synthesis. Furthermore, delayed kallistatin administration improved survival in CLP mice by 38%, and LPS-treated mice by 42%. In LPS-induced endotoxemic mice, kallistatin attenuated kidney damage in association with reduced serum creatinine, IL-6 and HMGB1 levels, and increased renal SOCS3 expression. Kallistatin also decreased liver injury in conjunction with diminished serum ALT levels and hepatic TNF-α and TLR4 expression. In cultured macrophages, kallistatin through its active site increased SOCS3 expression, but this effect was blocked by inhibitors of tyrosine kinase, protein kinase C and extracellular signal-regulated kinase (ERK), indicating that kallistatin stimulates a tyrosine-kinase-protein kinase C-ERK signaling pathway.ConclusionsThis is the first study to demonstrate that delayed human kallistatin administration is effective in attenuating multi-organ injury, inflammation and mortality in mouse models of polymicrobial infection and endotoxemia. Thus, kallistatin therapy may provide a promising approach for the treatment of sepsis in humans.


American Journal of Physiology-renal Physiology | 2010

Blockade of endogenous tissue kallikrein aggravates renal injury by enhancing oxidative stress and inhibiting matrix degradation.

Yuying Liu; Grant Bledsoe; Makato Hagiwara; Zhi-Rong Yang; Bo Shen; Lee Chao; Julie Chao

Levels of tissue kallikrein (TK) are significantly lower in the urine of patients with kidney failure, and TK expression is specifically diminished in rat kidney after recovery from ischemia-reperfusion injury. In this study, we investigated the functional consequence of blocking endogenous TK activity in a rat model of chronic kidney disease. Inhibition of endogenous TK levels for 10 days by neutralizing TK antibody injection in DOCA-salt rats caused a significant increase in blood urea nitrogen and urinary protein levels, and a decrease in creatinine clearance. Kidney sections from anti-TK antibody-treated rats displayed a marked rise in tubular dilation and protein cast accumulation as well as glomerular sclerosis and size. TK blockade also increased inflammatory cell infiltration, myofibroblast and collagen accumulation, and collagen fraction volume. Elevated renal inflammation and fibrosis by anti-TK antibody were associated with increased expression of tumor necrosis factor-alpha, intercellular adhesion molecule-1, tissue inhibitor of metalloproteinase-2 (TIMP-2), and plasminogen activator inhibitor-1 (PAI-1). Moreover, the detrimental effect of TK blockade resulted in reduced nitric oxide (NO) levels as well as increased serum lipid peroxidation, renal NADH oxidase activity, and superoxide formation. In cultured proximal tubular cells, TK inhibited angiotensin II-induced superoxide production and NADH oxidase activity via NO formation. In addition, TK markedly increased matrix metalloproteinase-2 activity with a parallel reduction of TIMP-2 and PAI-1 synthesis. These findings indicate that endogenous TK has the propensity to preserve kidney structure and function in rats with chronic renal disease by inhibiting oxidative stress and activating matrix degradation pathways.

Collaboration


Dive into the Zhi-Rong Yang's collaboration.

Top Co-Authors

Avatar

Julie Chao

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lee Chao

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Grant Bledsoe

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Pengfei Li

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Bo Shen

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Youming Guo

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Robert S. Smith

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Cesar V. Borlongan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chun-Fang Xia

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hang Yin

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge