Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Sheng Jiang is active.

Publication


Featured researches published by Zhi-Sheng Jiang.


Molecular Medicine Reports | 2013

Hydrogen sulfide prevents H₂O₂-induced senescence in human umbilical vein endothelial cells through SIRT1 activation.

Rong Suo; Zhan-Zhi Zhao; Zhi-Han Tang; Zhong Ren; Xing Liu; Lu-Shan Liu; Zuo Wang; Chao-Ke Tang; Dang-heng Wei; Zhi-Sheng Jiang

The aim of the present study was to investigate the attenuation of endothelial cell senescence by H2S and to explore the mechanisms underlying the anti-aging effects of H2S. Senescence was induced in human umbilical vein endothelial cells (HUVECs) by incubation in 25 µmol/l H2O2 for 1 h. Senescence-associated β-galactosidase (SA-β-gal) activity was examined to determine the effects of H2S on senescent HUVECs. The results indicated that SA-β-gal activity in the H2O2-treated HUVECs was 11.2 ± 1.06%, which was attenuated in the NaHS group. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with H2S. Immunoblot analyses revealed that SIRT1 levels in senescent HUVECs treated with NaHS (60 µM) were indistinguishable from controls; however, analyses of SIRT1 activity indicated that SIRT1 enzyme activity was enhanced. In addition, we found that H2S improves the function of senescent HUVECs. The present study demonstrated that H2S protects against HUVEC senescence, potentially through modulation of SIRT1 activity. Furthermore, this study establishes a novel endothelial protective effect of H2S.


Clinica Chimica Acta | 2014

SIRT1 in cardiovascular aging

Xin-Yuan Luo; Shun-Lin Qu; Zhi-Han Tang; Yuan Zhang; Mi-Hua Liu; Juan Peng; Hui Tang; Kang-Lun Yu; Chi Zhang; Zhong Ren; Zhi-Sheng Jiang

Cardiovascular disease (CVD) is the leading cause of death worldwide, with aging as the key independent risk factor. Effective interventions are necessary to delay aging. Sirtuin1 (SIRT1), a NAD(+)-dependent histone deacetylase, is closely related to lifespan extension. SIRT1 exerts beneficial effects on aging and age-related diseases, such as atherosclerosis. In this review, we summarize the current knowledge on the functions of SIRT1 in cardiovascular aging, focusing on the underlying molecular mechanisms, including inhibition of oxidative stress and inflammation, and induction of autophagy. We also demonstrate that moderate up-regulation or activation of SIRT1 in cardiovascular aging and age-related CVD may confer important application values.


Atherosclerosis | 2017

New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway

Zhi-Han Tang; Juan Peng; Zhong Ren; Jing Yang; Ting-Ting Li; Tao-Hua Li; Zuo Wang; Dang-heng Wei; Lu-Shan Liu; Xi-Long Zheng; Zhi-Sheng Jiang

BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin 9 (PCSK9) has emerged as a popular target in the development of new cholesterol-lowering drugs and therapeutic interventions for atherosclerosis. PCSK9 could accelerate atherosclerosis through mechanisms beyond the degradation of the hepatic low-density lipoprotein receptor. Several clinical studies suggested that PCSK9 is involved in atherosclerotic inflammation. Accordingly, this study aimed to explore the role of PCSK9 in vascular inflammation that promotes atherosclerotic progression. METHODS We examined whether PCSK9 silencing via transduction with the lentivirus-mediated PCSK9 shRNA (LV-PCSK9 shRNA) vector affects the formation of vascular lesions in hyperlipidemia-induced atherosclerosis in apolipoprotein E knockout (apoE KO) mice. In vitro, the effects of PCSK9 on oxLDL-induced macrophages inflammation were investigate using LV-PCSK9 and LV-PCSK9 shRNA for PCSK9 overexpression and PCSK9 silencing. RESULTS Immunohistochemical analysis showed that PCSK9 expression increased within atherosclerotic plaques in apoE KO mice. These in vivo results showed that the LV-PCSK9 shRNA group of mice developed less aortic atherosclerotic plaques compared with the control group. These lesions also had the reduced number of macrophages and decreased expression of vascular inflammation regulators, such as tumor necrosis factor-α, interleukin 1 beta, monocyte chemoattractant protein-1, toll-like receptor 4 and nuclear factor kappa B (NF-κB). We further showed that PCSK9 overexpression in macrophages in vitro increased the secretion of oxLDL-induced proinflammatory cytokines. PCSK9 overexpression upregulated TLR4 expression and increased p-IκBα levels, IkBα degradation, and NF-κB nuclear translocation in macrophages, but PCSK9 knockdown had the opposite effects in oxLDL-treated macrophages. CONCLUSIONS PCSK9 gene interference could suppress atherosclerosis directly through decreasing vascular inflammation and inhibiting the TLR4/NF-κB signaling pathway without affecting plasma cholesterol level in high-fat diet-fed apoE KO mice. PCSK9 may be an inflammatory mediator in the pathogenesis of atherosclerosis.


Acta Biochimica et Biophysica Sinica | 2010

Oxidized low-density lipoprotein activates adipophilin through ERK1/2 signal pathway in RAW264.7 cells

Qingnan Liu; Zhibing Dai; Zhiqiang Liu; Xiaohui Liu; Chaoke Tang; Zuo Wang; Guang-Hui Yi; Lushan Liu; Zhi-Sheng Jiang; Yongzong Yang; Zhong-Hua Yuan

It has been reported that oxidized low-density lipoprotein (Ox-LDL) can increase the expression of adipophilin. However, the detailed mechanisms are not fully understood. The aim of this study was to investigate the mechanism of Ox-LDL on adipophilin expression and the intracellular lipid droplet accumulation. A mouse macrophage-like cell line, RAW264.7, was used throughout, and it was found that Ox-LDL induced adipophilin expression in a dose-dependent manner. Moreover, Ox-LDL induced peroxisome proliferator-activated receptor-gamma (PPARgamma) expression and PPARgamma-specific inhibitor T0070907 abrogated Ox-LDL-induced adipophilin expression, but specific agonist GW1929 not. Furthermore, Ox-LDL induced phosphorylation of ERK1/2, and ERK1/2-specific inhibition by PD98059 suppressed the Ox-LDL-induced PPARgamma and adipophilin expression. The results showed that ERK1/2 or PPARgamma-specific inhibition decreased the amounts of intracellular lipid droplets. Meanwhile, the PPARgamma-specific agonist increased intracellular lipid droplets. These results suggested that Ox-LDL-induced increase in adipophilin level via ERK1/2 activation is one of the mechanisms of inducing greater amounts of intracellular lipid droplets in RAW264.7 cells, which indicated that adipophilin is involved in atherosclerotic progression.


Molecular and Cellular Biochemistry | 2016

PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells

Mi-Hua Liu; Guo-hua Li; Li-Jun Peng; Shun-Lin Qu; Yuan Zhang; Juan Peng; Xin-Yuan Luo; Heng-Jing Hu; Zhong Ren; Yao Liu; Hui Tang; Lu-Shan Liu; Zhi-Han Tang; Zhi-Sheng Jiang

Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.


Atherosclerosis | 2015

Ox-Lp(a) transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1–AMPK–mTOR pathway

Guo-hua Li; Xiao-long Lin; Hai Zhang; Shuang Li; Xing-lan He; Kai Zhang; Juan Peng; Ya-ling Tang; Jun-fa Zeng; Yue Zhao; Xiao-feng Ma; Jian-jun Lei; Ren Wang; Dang-heng Wei; Zhi-Sheng Jiang; Zuo Wang

Oxidised lipoprotein(a) [oxLp(a)] is considered as a more potent arteriosclerotic factor than native Lp(a). However, the molecular mechanisms underlying this potency remain unclear. Reactive oxygen species (ROS) possibly act as intracellular second messengers that participate in autophagy stimulation. In this study, the effect of oxLp(a) on endothelial cell autophagy was determined. The mechanism and effect of autophagy on endothelial cells were also investigated. Results showed that oxLp(a) could induce autophagy depending on the generation of cellular ROS. Superoxide dismutase, an antioxidant, could inhibit oxLp(a)-induced autophagy in human umbilical vascular endothelial cells. Furthermore, poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1)-liver kinase B1 (LKB1)-adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) and LKB1-AMPK-mTOR pathways are involved in oxLp(a)-induced autophagy. These pathways are also dependent on ROS. Thus, oxLp(a) induced autophagy via LKB1-AMPK-mTOR and PAPR-1-LKB1-AMPK-mTOR pathways, which are dependent on ROS generation.


Acta Biochimica et Biophysica Sinica | 2015

Pannexin-1 channels and their emerging functions in cardiovascular diseases

Lanfang Li; Lu He; Di Wu; Linxi Chen; Zhi-Sheng Jiang

Pannexin-1, Pannexin-2, and Pannexin-3 are three members of the Pannexin family of channel-forming glycoprotein. Their primary function is defined by their ability to form single-membrane channels. Pannexin-1 ubiquitously exists in many cells and organs throughout the body and is specially distributed in the circulatory system, while the expressions of Pannexin-2 and Pannexin-3 are mostly restricted to organs and tissues. Pannexin-1 oligomers have been shown to be functional single membrane channels that connect intracellular and extracellular compartments and are not intercellular channels in appositional membranes. The physiological functions of Pannexin-1 are to link to the adenosine triphosphate efflux that acts as a paracrine signal, and regulate cellular inflammasomes in a variety of cell types under physiological and pathophysiological conditions. However, there are still many functions to be explored. This review summarizes recent reports and discusses the role of Pannexin-1 in cardiovascular diseases, including ischemia, arrhythmia, cardiac fibrosis, and hypertension. Pannexin-1 has been suggested as an exciting, clinically relevant target in cardiovascular diseases.


Acta Biochimica et Biophysica Sinica | 2012

OxLDL up-regulates Niemann-Pick type C1 expression through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.

Xiao-Hua Yu; Xiao-Xu Li; Guo-Jun Zhao; Ji Xiao; Zhong-Cheng Mo; Kai Yin; Zhi-Sheng Jiang; Yuchang Fu; Xiaohui Zha; Chao-Ke Tang

The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane. It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression. However, the detailed mechanisms are not fully understood. In this study, we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages. Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner. In addition, oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2) mRNA and protein expression in the macrophages, and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment. OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels, which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages. OxLDL dramatically elevated cellular cholesterol efflux, which was abrogated by inhibiting ERK1/2 and/or COX-2. In addition, oxLDL-induced NPC1 expression and cellular cholesterol efflux were reversed by PPARα siRNA or GW6471, an antagonist of PPARα. Taken together, these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.


Circulation | 2018

Bmal1 in Perivascular Adipose Tissue Regulates Resting Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen

Lin Chang; Wenhao Xiong; Xiangjie Zhao; Yanbo Fan; Yanhong Guo; Minerva T. Garcia-Barrio; Jifeng Zhang; Zhi-Sheng Jiang; Jiandie D. Lin; Y. Eugene Chen

Background: The perivascular adipose tissue (PVAT) surrounding vessels constitutes a distinct functional integral layer of the vasculature required to preserve vascular tone under physiological conditions. However, there is little information on the relationship between PVAT and blood pressure regulation, including its potential contributions to circadian blood pressure variation. Methods: Using unique brown adipocyte–specific aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and angiotensinogen knockout mice, we determined the vasoactivity of homogenized PVAT in aortic rings and how brown adipocyte peripheral expression of Bmal1 and angiotensinogen in PVAT regulates the amplitude of diurnal change in blood pressure in mice. Results: We uncovered a peripheral clock in PVAT and demonstrated that loss of Bmal1 in PVAT reduces blood pressure in mice during the resting phase, leading to a superdipper phenotype. PVAT extracts from wild-type mice significantly induced contractility of isolated aortic rings in vitro in an endothelium-independent manner. This property was impaired in PVAT from brown adipocyte–selective Bmal1-deficient (BA-Bmal1-KO) mice. The PVAT contractile properties were mediated by local angiotensin II, operating through angiotensin II type 1 receptor–dependent signaling in the isolated vessels and linked to PVAT circadian regulation of angiotensinogen. Indeed, angiotensinogen mRNA and angiotensin II levels in PVAT of BA-Bmal1-KO mice were significantly reduced. Systemic infusion of angiotensin II, in turn, reduced Bmal1 expression in PVAT while eliminating the hypotensive phenotype during the resting phase in BA-Bmal1-KO mice. Angiotensinogen, highly expressed in PVAT, shows circadian expression in PVAT, and selective deletion of angiotensinogen in brown adipocytes recapitulates the phenotype of selective deletion of Bmal1 in brown adipocytes. Furthermore, angiotensinogen is a transcriptional target of Bmal1 in PVAT. Conclusions: These data indicate that local Bmal1 in PVAT regulates angiotensinogen expression and the ensuing increase in angiotensin II, which acts on smooth muscle cells in the vessel walls to regulate vasoactivity and blood pressure in a circadian fashion during the resting phase. These findings will contribute to a better understanding of the cardiovascular complications of circadian disorders, alterations in the circadian dipping phenotype, and cross-talk between systemic and peripheral regulation of blood pressure.


Acta Biochimica et Biophysica Sinica | 2016

The role of autophagy in cardiac hypertrophy

Lanfang Li; Jin Xu; Lu He; Lijun Peng; Qiaoqing Zhong; Linxi Chen; Zhi-Sheng Jiang

Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy.

Collaboration


Dive into the Zhi-Sheng Jiang's collaboration.

Top Co-Authors

Avatar

Zhi-Han Tang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Zuo Wang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Juan Peng

University of South China

View shared research outputs
Top Co-Authors

Avatar

Lu-Shan Liu

University of South China

View shared research outputs
Top Co-Authors

Avatar

Dang-heng Wei

University of South China

View shared research outputs
Top Co-Authors

Avatar

Zhong Ren

University of South China

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

University of South China

View shared research outputs
Top Co-Authors

Avatar

Shun-Lin Qu

University of South China

View shared research outputs
Top Co-Authors

Avatar

Guo-hua Li

University of South China

View shared research outputs
Top Co-Authors

Avatar

Yue Zhao

University of South China

View shared research outputs
Researchain Logo
Decentralizing Knowledge