Zhi-Sheng Xu
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhi-Sheng Xu.
PLOS ONE | 2015
Chang Tian; Qian Jiang; Feng Wang; Guang-Long Wang; Zhi-Sheng Xu; Ai-Sheng Xiong
Carrot, a biennial herb of the Apiaceae family, is among the most important vegetable crops in the world. In this study, nine candidate reference genes (GAPDH, ACTIN, eIF-4α, PP2A, SAND, TIP41, UBQ, EF-1α, and TUB) were cloned from carrot. Carrot plants were subjected to abiotic stresses (heat, cold, salt, and drought) and hormone stimuli (gibberellin, salicylic acid, methyl jasmonate, and abscisic acid). The expression profiles of the candidate reference genes were evaluated in three technical and biological replicates. Real-time qPCR data analyses were performed using three commonly used Excel-based applets namely, BestKeeper, geNorm, and NormFinder. ACTIN and TUB were the most stable genes identified among all sample groups, but individual analysis revealed changes in their expression profiles. GAPDH displayed the maximum stability for most of single stresses. To further validate the suitability of the reference genes identified in this study, the expression profile of DcDREB-A1 gene (homolog of AtDREB-A1 gene of Arabidophsis) was studied in carrot. The appropriate reference genes were selected that showed stable expression under the different experimental conditions.
Scientific Reports | 2015
Xiao-Ling Jia; Guang-Long Wang; Fei Xiong; Xurun Yu; Zhi-Sheng Xu; Feng Wang; Ai-Sheng Xiong
Celery of the family Apiaceae is a biennial herb that is cultivated and consumed worldwide. Lignin is essential for cell wall structural integrity, stem strength, water transport, mechanical support, and plant pathogen defense. This study discussed the mechanism of lignin formation at different stages of celery development. The transcriptome profile, lignin distribution, anatomical characteristics, and expression profile of leaves at three stages were analyzed. Regulating lignin synthesis in celery growth development has a significant economic value. Celery leaves at three stages were collected, and Illumina paired-end sequencing technology was used to analyze large-scale transcriptome sequences. From Stage 1 to 3, the collenchyma and vascular bundles in the petioles and leaf blades thickened and expanded, whereas the phloem and the xylem extensively developed. Spongy and palisade mesophyll tissues further developed and were tightly arranged. Lignin accumulation increased in the petioles and the mesophyll (palisade and spongy), and the xylem showed strong lignification. Lignin accumulation in different tissues and at different stages of celery development coincides with the anatomic characteristics and transcript levels of genes involved in lignin biosynthesis. Identifying the genes that encode lignin biosynthesis-related enzymes accompanied by lignin distribution may help elucidate the regulatory mechanisms of lignin biosynthesis in celery.
Environmental Science & Technology | 2012
Zhen-Hong Su; Zhi-Sheng Xu; Ri-He Peng; Yongsheng Tian; Wei Zhao; Hongjuan Han; Quan-Hong Yao; Ai-Zhong Wu
Trichlorophenol (TCP) and its derivatives are introduced into the environment through numerous sources, including wood preservatives and biocides. Environmental contamination by TCPs is associated with human health risks, necessitating the development of cost-effective remediation techniques. Efficient phytoremediation of TCP is potentially feasible because it contains a hydroxyl group and is suitable for direct phase II metabolism. In this study, we present a system for TCP phytoremediation based on sugar conjugation by overexpressing a Populus putative UDP-glc-dependent glycosyltransferase (UGT). The enzyme PtUGT72B1 displayed the highest TCP-conjugating activity among all reported UGTs. Transgenic Arabidopsis demonstrated significantly enhanced tolerances to 2,4,5-TCP and 2,4,6-TCP. Transgenic plants also exhibited a strikingly higher capacity to remove TCP from their media. This work indicates that Populus UGT overexpression in Arabidopsis may be an efficient method for phytoremoval and degradation of TCP. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TCP.
Plant Physiology and Biochemistry | 2015
Guang-Long Wang; Zhi-Sheng Xu; Feng Wang; Meng-Yao Li; Guo-Fei Tan; Ai-Sheng Xiong
Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots.
Molecular Biology Reports | 2015
Ying Huang; Meng-Yao Li; Feng Wang; Zhi-Sheng Xu; Wei Huang; Guang-Long Wang; Jing Ma; Ai-Sheng Xiong
Heat shock factors (HSFs) play key roles in the response to abiotic stress in eukaryotes. In this study, 35 DcHSFs were identified from carrot (Daucus carota L.) based on the carrot genome database. All 35 DcHSFs were divided into three classes (A, B, and C) according to the structure and phylogenetic relationships of four different plants, namely, Arabidopsis thaliana, Vitis vinifera, Brassica rapa, and Oryza sativa. Comparative analysis of algae, gymnosperms, and angiosperms indicated that the numbers of HSF transcription factors were related to the plant’s evolution. The expression profiles of five DcHsf genes (DcHsf 01, DcHsf 02, DcHsf 09, DcHsf 10, and DcHsf 16), which selected from each subfamily (A, B, and C), were detected by quantitative real-time PCR under abiotic stresses (cold, heat, high salinity, and drought) in two carrot cultivars, D. carota L. cvs. Kurodagosun and Junchuanhong. The expression levels of DcHsfs were markedly increased by heat stress, except that of DcHsf 10, which was down regulated. The expression profiles of different DcHsfs in the same class also differed under various stress treatments. The expression profiles of these DcHsfs were also different in tissues of two carrot cultivars. This study is the first to identify and characterize the DcHSF family transcription factors in plants of Apiaceae using whole-genome analysis. The results of this study provide an in-depth understanding of the DcHSF family transcription factors’ structure, function, and evolution in carrot.
Horticulture research | 2015
Guang-Long Wang; Fei Xiong; Feng Que; Zhi-Sheng Xu; Feng Wang; Ai-Sheng Xiong
Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.
BMC Plant Biology | 2015
Guang-Long Wang; Feng Que; Zhi-Sheng Xu; Feng Wang; Ai-Sheng Xiong
BackgroundGibberellins stimulate cell elongation and expansion during plant growth and development. Carrot is a root plant with great value and undergoes obvious alteration in organ size over the period of plant growth. However, the roles of gibberellins in carrot remain unclear.ResultsTo investigate the effects of gibberelliins on the growth of carrot, we treated carrot plants with gibberellic acid 3 (GA3) or paclobutrazol (a gibberellin inhibitor). The results found that GA3 dramatically reduced the root growth but stimulated the shoot growth of carrot. It also significantly promoted xylem development in the tuberous root of carrot. In addition, transcript levels of genes related to gibberellins, auxin, cytokinins, abscisic acid and brassinolides were altered in response to increased or reduced gibberellins.ConclusionsThe inhibited tuberous root growth but enhanced shoot growth in plants treated with GA3 can be principally attributed to the changes in the xylem development of carrot roots. Negative feedback regulation mechanism of gibberellin biosynthesis also occurred in response to altered gibberellin accumulation. Gibberellins may interact with other hormones to regulate carrot plant growth through crosstalk mechanisms. This study provided novel insights into the functions of gibberellins in the growth and development of carrot.
Scientific Reports | 2016
Meng-Yao Li; Zhi-Sheng Xu; Chang Tian; Ying Huang; Feng Wang; Ai-Sheng Xiong
WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.
Scientific Reports | 2017
Zhi-Sheng Xu; Kai Feng; Feng Que; Feng Wang; Ai-Sheng Xiong
Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.
PLOS ONE | 2014
Meng-Yao Li; Hua-Wei Tan; Feng Wang; Qian Jiang; Zhi-Sheng Xu; Chang Tian; Ai-Sheng Xiong
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.