Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi Shi is active.

Publication


Featured researches published by Zhi Shi.


PLOS ONE | 2014

Evodiamine Synergizes with Doxorubicin in the Treatment of Chemoresistant Human Breast Cancer without Inhibiting P-Glycoprotein

Shengpeng Wang; Lu Wang; Zhi Shi; Zhangfeng Zhong; Meiwan Chen; Wang Y

Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO), a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX)-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose) polymerase (PARP), caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs). Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp). Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.


The American Journal of Chinese Medicine | 2014

Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells.

Shengpeng Wang; Ruie Chen; Zhangfeng Zhong; Zhi Shi; Meiwan Chen; Wang Y

Drug resistance remains an on-going challenge in breast cancer chemotherapy. Combination of two or more drugs is an effective strategy to access context-specific multiple targets and overcome undesirable toxicity that is almost inevitable in single-drug chemotherapy. Many plant food-derived polyphenolic compounds have been proven to modulate many key factors responsible for cancer drug resistance, which makes them a promising group of low toxicity candidates for reversing cancer resistance. In this study, we analyzed the combination effect of two chemopreventive polyphenols, curcumin (Cur) and epigallocatechin-3-gallate (EGCG), in combating resistant breast cancer. Our present results showed that EGCG significantly enhanced the growth inhibition and apoptosis in both doxorubicin (DOX)-sensitive and resistant MCF-7 cells induced by Cur. The mechanism may be related to the further activation of caspase-dependent apoptotic signaling pathways and the enhanced cellular incorporation of Cur by inhibiting P-glycoprotein (P-gp) pump function. Moreover, Cur and EGCG in combination could enhance the toxicity of DOX and increase the intracellular level of DOX in resistant MCF-7 cells. Our findings with this practical combination of Cur and EGCG encourage us to move on to a promising strategy for successful treatment of human breast cancer resistance by combining two low-toxic chemotherapeutic agents from diet.


Medicinal Research Reviews | 2016

Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases.

Qi-Wei Jiang; Meiwan Chen; Ke-Jun Cheng; Peizhong Yu; Xing Wei; Zhi Shi

Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti‐inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.


Oncotarget | 2015

Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine

Qi-Wei Jiang; Ke-Jun Cheng; Xiao-Long Mei; Jian-Ge Qiu; Wen-Ji Zhang; You-Qiu Xue; Wu-Ming Qin; Yang Yang; Di-Wei Zheng; Yao Chen; Meng-Ning Wei; Xu Zhang; Min Lv; Meiwan Chen; Xing Wei; Zhi Shi

Triptolide and celastrol are two main active compounds isolated from Thunder God Vine with the potent anticancer activity. However, the anticancer effect of triptolide in combination with celastrol is still unknown. In the present study, we demonstrated that the combination of triptolide with celastrol synergistically induced cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increased intracellular ROS accumulation in cancer cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine dramatically blocked the apoptosis induced by co-treatment with triptolide and celastrol. Treatment with celastrol alone led to the decreased expressions of HSP90 client proteins including survivin, AKT, EGFR, which was enhanced by the addition of triptolide. Additionally, the celastrol-induced expression of HSP70 and HSP27 was abrogated by triptolide. In the nude mice with xenograft tumors, the lower-dose combination of triptolide with celastrol significantly inhibited the growth of tumors without obvious toxicity. Overall, triptolide in combination with celastrol showed outstanding synergistic anticancer effect in vitro and in vivo, suggesting that this beneficial combination may offer a promising treatment option for cancer patients.


International Journal of Nanomedicine | 2016

Recent insights into the biological activities and drug delivery systems of tanshinones

Yuee Cai; Wen-Ji Zhang; Zirong Chen; Zhi Shi; Chengwei He; Meiwan Chen

Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications.


Biotechnology Advances | 2015

Nanoscale drug delivery for taxanes based on the mechanism of multidrug resistance of cancer

Shengpeng Wang; Jian-Ge Qiu; Zhi Shi; Wang Y; Meiwan Chen

Taxanes are one type of the most extensively used chemotherapeutic agents to treat cancers. However, their clinical use is severely limited by intrinsic and acquired resistance. A diverse variety of mechanisms has been implicated about taxane resistance, such as alterations of drug targets, overexpression of efflux transporters, defective apoptotic machineries, and barriers in drug transport. The deepening understanding of molecular mechanisms of taxane resistance has spawned a number of targets for reversing resistance. However, circumvention of taxane resistance would not only possess therapeutic potential, but also face with clinical challenge, which accelerates the development of optimal nanoscale delivery systems. This review highlights the current understanding on the mechanisms of taxane resistance, and provides a comprehensive analysis of various nanoscale delivery systems to reverse taxane resistance.


Acta Biomaterialia | 2017

pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities

Jinming Zhang; Jingjing Li; Zhi Shi; Yang Yang; Xi Xie; Simon Ming-Yuen Lee; Wang Y; Kam W. Leong; Meiwan Chen

Co-delivery of multiple drugs with complementary anticancer mechanisms by nano-carriers offers an effective strategy to treat cancer. The combination of drugs with pro-apoptotic and anti-angiogenic activities is potentially effective in treating human hepatocellular carcinoma (HCC). Herein, we developed a co-delivery system for doxorubicin (Dox), a pro-apoptotic drug, and curcumin (Cur), a potent drug for antiangiogenesis, in pH-sensitive nanoparticles (NPs) constituted with amphiphilic poly(β-amino ester) copolymer. Dox & Cur co-loaded NPs ((D+C)/NPs) were prepared with optimized drug ratio, showing low polydispersity, high encapsulation efficiency, and enhanced release in the acidic environment of cancer cells. Furthermore, enhanced cellular internalization of cargoes delivered from (D+C)/NPs were observed in human liver cancer SMMC 7721 cells and human umbilical vein endothelial cells (HUVECs) compared to the use of free drugs. The (D+C)/NPs induced a high rate of apoptosis in SMMC 7721 cells through decreased mitochondrial membrane potential. Additionally, (D+C)/NPs exhibited stronger anti-angiogenic effects including inhibition of HUVEC proliferation, migration, invasion, and tube formation mediated VEGF pathway modulation in vitro and in vivo. Taken together, encapsulation of the pro-apoptotic drug Dox and antiangiogenic agent Cur in pH-sensitive NPs provides a promising strategy to effectively inhibit HCC progression in a synergistic manner. STATEMENT OF SIGNIFICANCE The combination of multiple drugs has been demonstrated to be more effective than single treatment. However, the different physicochemical and pharmacokinetic profiles of each drug render optimal delivery challenging. In view of the great delivery advantage of nanocarriers to unify the multiple drugs in vivo, stimulus-responsive nano-carriers are more crucial to increase efficacy and reduce toxicity from off-target exposure. Therefore, herein the pH-sensitive nanoparticles, composed by d-α-tocopheryl polyethylene glycol 1000-block-poly (β-amino ester) (TPGS-PAE) polymers, have been fabricated for doxorubicin (Dox) and curcumin (Cur) co-delivery, which exhibited diverse anticancer approaches, i.e. pro-apoptosis and antiangiogenesis. The precise intracellular target site and effective drug combination concentration result in the enhanced antitumor efficiency and the reduced systematic toxicity of Dox. The co-encapsulation of the pro-apoptotic drug and antiangiogenic agent in pH-sensitive NPs provides a promising strategy to effectively inhibit malignant neoplasm progression in a synergistic manner.


Medicinal Research Reviews | 2017

Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

Yuee Cai; Jinming Zhang; Nelson G. Chen; Zhi Shi; Jian-Ge Qiu; Chengwei He; Meiwan Chen

Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (–)‐epigallocatechin‐3‐gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off‐taste, and shorter half‐life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents.


Oncotarget | 2015

Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer.

Xiu-Xiu Chen; Feng-Feng Xie; Xiu-Jie Zhu; Feng Lin; Shi-Shi Pan; Li-Hua Gong; Jian-Ge Qiu; Wen-Ji Zhang; Qi-Wei Jiang; Xiao-Long Mei; You-Qiu Xue; Wu-Ming Qin; Zhi Shi; Xiao-Jian Yan


Oncotarget | 2015

Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter

Jian-Ge Qiu; Yao-Jun Zhang; Yong Li; Jin-Ming Zhao; Wen-Ji Zhang; Qi-Wei Jiang; Xiao-Long Mei; You-Qiu Xue; Wu-Ming Qin; Yang Yang; Di-Wei Zheng; Yao Chen; Meng-Ning Wei; Zhi Shi

Collaboration


Dive into the Zhi Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge