Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-You Zhou is active.

Publication


Featured researches published by Zhi-You Zhou.


Nature | 2010

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Jian-Feng Li; Yi-Fan Huang; Yong Ding; Zhilin Yang; Song Bo Li; Xiao Shun Zhou; Feng Ru Fan; Wei Zhang; Zhi-You Zhou; D. Y. Wu; Bin Ren; Zhong Lin Wang; Zhong-Qun Tian

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as ‘smart dust’ over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.


Nature Nanotechnology | 2011

Freestanding palladium nanosheets with plasmonic and catalytic properties

Xiaoqing Huang; Shaoheng Tang; Xiaoliang Mu; Yan Dai; Guangxu Chen; Zhi-You Zhou; Fangxiong Ruan; Zhilin Yang; Nanfeng Zheng

Ultrathin metal films can exhibit quantum size and surface effects that give rise to unique physical and chemical properties. Metal films containing just a few layers of atoms can be fabricated on substrates using deposition techniques, but the production of freestanding ultrathin structures remains a significant challenge. Here we report the facile synthesis of freestanding hexagonal palladium nanosheets that are less than 10 atomic layers thick, using carbon monoxide as a surface confining agent. The as-prepared nanosheets are blue in colour and exhibit a well-defined but tunable surface plasmon resonance peak in the near-infrared region. The combination of photothermal stability and biocompatibility makes palladium nanosheets promising candidates for photothermal therapy. The nanosheets also exhibit electrocatalytic activity for the oxidation of formic acid that is 2.5 times greater than that of commercial palladium black catalyst.


Chemical Society Reviews | 2011

Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage

Zhi-You Zhou; Na Tian; Jun-Tao Li; Ian Broadwell; Shi-Gang Sun

The properties of nanomaterials for use in catalytic and energy storage applications strongly depends on the nature of their surfaces. Nanocrystals with high surface energy have an open surface structure and possess a high density of low-coordinated step and kink atoms. Possession of such features can lead to exceptional catalytic properties. The current barrier for widespread industrial use is found in the difficulty to synthesise nanocrystals with high-energy surfaces. In this critical review we present a review of the progress made for producing shape-controlled synthesis of nanomaterials of high surface energy using electrochemical and wet chemistry techniques. Important nanomaterials such as nanocrystal catalysts based on Pt, Pd, Au and Fe, metal oxides TiO(2) and SnO(2), as well as lithium Mn-rich metal oxides are covered. Emphasis of current applications in electrocatalysis, photocatalysis, gas sensor and lithium ion batteries are extensively discussed. Finally, a future synopsis about emerging applications is given (139 references).


Journal of the American Chemical Society | 2010

Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation

Na Tian; Zhi-You Zhou; Neng-Fei Yu; Li-Yang Wang; Shi-Gang Sun

Tetrahexahedral Pd nanocrystals (THH Pd NCs) with {730} high-index facets were directly produced on a glassy carbon substrate in a dilute PdCl(2) solution by a newly developed programmed electrodeposition method. The THH Pd NCs, thanks to their high density of surface atomic steps, exhibit 4-6 times higher catalytic activity than commercial Pd black catalyst toward ethanol electrooxidation in alkaline solutions. This straightforward method provides a promising route to facile preparation of high-index-faceted metal nanocatalysts with high catalytic activity.


Angewandte Chemie | 2010

High‐Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation

Zhi-You Zhou; Zhi-Zhong Huang; De-Jun Chen; Qiang Wang; Na Tian; Shi-Gang Sun

NSFC [20873113, 20833005, 20933004]; MOST [2007DFA40890]; Research Fund [200803841035]; Fujian Provincial Department of Science and Technology [2008F3099, 200810025]


Journal of the American Chemical Society | 2014

Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing

Qiang Wang; Zhi-You Zhou; Yu-Jiao Lai; Yong You; Jian-Guo Liu; Xia-Ling Wu; Ephrem Terefe; Chi Chen; Lin Song; Muhammad Rauf; Na Tian; Shi-Gang Sun

High-temperature pyrolyzed FeN(x)/C catalyst is one of the most promising nonprecious metal electrocatalysts for oxygen reduction reaction (ORR). However, it suffers from two challenging problems: insufficient ORR activity and unclear active site structure. Herein, we report a FeN(x)/C catalyst derived from poly-m-phenylenediamine (PmPDA-FeN(x)/C) that possesses high ORR activity (11.5 A g(-1) at 0.80 V vs RHE) and low H2O2 yield (<1%) in acid medium. The PmPDA-FeN(x)/C also exhibits high catalytic activity for both reduction and oxidation of H2O2. We further find that the ORR activity of PmPDA-FeN(x)/C is not sensitive to CO and NO(x) but can be suppressed significantly by halide ions (e.g., Cl(-), F(-), and Br(-)) and low valence state sulfur-containing species (e.g., SCN(-), SO2, and H2S). This result reveals that the active sites of the FeN(x)/C catalyst contains Fe element (mainly as Fe(III) at high potentials) in acid medium.


Advanced Materials | 2010

Crystal Habit-Tuned Nanoplate Material of Li[Li1/3-2x/3NixMn2/3-x/3]O-2 for High-Rate Performance Lithium-Ion Batteries

Guo-Zhen Wei; Xia Lu; Fu-Sheng Ke; Ling Huang; Jun-Tao Li; Zhaoxiang Wang; Zhi-You Zhou; Shi-Gang Sun

A cathode for high-rate performance lithium-ion batteries (LIBs) has been developed from a crystal habit-tuned nanoplate Li(Li(0.17)Ni(0.25)Mn(0.58))O₂ material, in which the proportion of (010) nanoplates (see figure) has been significantly increased. The results demonstrate that the fraction of the surface that is electrochemically active for Li(+) transportation is a key criterion for evaluating the different nanostructures of potential LIB materials.


Angewandte Chemie | 2009

Simplifying the Creation of Hollow Metallic Nanostructures: One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes†

Xiaoqing Huang; Huihui Zhang; Changyou Guo; Zhi-You Zhou; Nanfeng Zheng

Efficiency simplified: A synthetic strategy has been developed to prepare single-crystalline hollow Pd/Pt nanocubes (right, see picture; left: nanocubes). Compared to the solid Pd/Pt nanocubes of similar sizes, the hollow Pd/Pt nanocubes increase accessible surface area and therefore improve electrocatalytic activity in formic acid oxidation.


Journal of the American Chemical Society | 2009

Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals

Xiaoqing Huang; Shaoheng Tang; Huihui Zhang; Zhi-You Zhou; Nanfeng Zheng

Novel concave Pd nanocrystals with uniform diameter were successfully prepared in the presence of formaldehyde. While the outer surfaces of the as-prepared concave Pd nanocrystals are {111}, the faces concave toward the polyhedral center are high-surface-energy {110} faces. The degree of concavity and therefore the percentage of {110} of the nanocrystals are tunable by varying the amount of formaldehyde and the reaction temperature. Owing to the existence of active {110} facets, the electrocatalytic activity of the concave Pd nanocrystals displays dependency on their degree of concavity.


Nature Materials | 2016

Interfacial electronic effects control the reaction selectivity of platinum catalysts

Guangxu Chen; Chaofa Xu; Xiaoqing Huang; Jinyu Ye; Lin Gu; Gang Li; Zichao Tang; Binghui Wu; Huayan Yang; Zipeng Zhao; Zhi-You Zhou; Gang Fu; Nanfeng Zheng

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

Collaboration


Dive into the Zhi-You Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge