Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhichao Sun is active.

Publication


Featured researches published by Zhichao Sun.


Environmental Health | 2013

Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons

Zhichao Sun; Yebin Tao; Shi Li; Kelly K. Ferguson; John D. Meeker; Sung Kyun Park; Stuart Batterman; Bhramar Mukherjee

BackgroundAs public awareness of consequences of environmental exposures has grown, estimating the adverse health effects due to simultaneous exposure to multiple pollutants is an important topic to explore. The challenges of evaluating the health impacts of environmental factors in a multipollutant model include, but are not limited to: identification of the most critical components of the pollutant mixture, examination of potential interaction effects, and attribution of health effects to individual pollutants in the presence of multicollinearity.MethodsIn this paper, we reviewed five methods available in the statistical literature that are potentially helpful for constructing multipollutant models. We conducted a simulation study and presented two data examples to assess the performance of these methods on feature selection, effect estimation and interaction identification using both cross-sectional and time-series designs. We also proposed and evaluated a two-step strategy employing an initial screening by a tree-based method followed by further dimension reduction/variable selection by the aforementioned five approaches at the second step.ResultsAmong the five methods, least absolute shrinkage and selection operator regression performs well in general for identifying important exposures, but will yield biased estimates and slightly larger model dimension given many correlated candidate exposures and modest sample size. Bayesian model averaging, and supervised principal component analysis are also useful in variable selection when there is a moderately strong exposure-response association. Substantial improvements on reducing model dimension and identifying important variables have been observed for all the five statistical methods using the two-step modeling strategy when the number of candidate variables is large.ConclusionsThere is no uniform dominance of one method across all simulation scenarios and all criteria. The performances differ according to the nature of the response variable, the sample size, the number of pollutants involved, and the strength of exposure-response association/interaction. However, the two-step modeling strategy proposed here is potentially applicable under a multipollutant framework with many covariates by taking advantage of both the screening feature of an initial tree-based method and dimension reduction/variable selection property of the subsequent method. The choice of the method should also depend on the goal of the study: risk prediction, effect estimation or screening for important predictors and their interactions.


Hypertension | 2016

Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study

Robert D. Brook; Zhichao Sun; Jeffrey R. Brook; Xiaoyi Zhao; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Xiaoquan Rao; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Qinghua Sun; Zhongjie Fan; Sanjay Rajagopalan

Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m3 and 0.2 to 24.5 µg/m3, respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3–3.7) to 2.7 (0.6–4.8) mm Hg per SD increase (67.2 µg/m3), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0–2.5) to 1.7 (0.3–3.2) mm Hg per SD increase (3.6 µg/m3). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01–0.36] and 0.22 [0.04–0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02–0.34] and 0.22 [0.08–0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.


Hypertension | 2014

Personal Black Carbon Exposure Influences Ambulatory Blood Pressure Air Pollution and Cardiometabolic Disease (AIRCMD-China) Study

Xiaoyi Zhao; Zhichao Sun; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Fumo Yang; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Jeffrey R. Brook; Qinghua Sun; Robert D. Brook; Sanjay Rajagopalan; Zhongjie Fan

Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution. # Novelty and Significance {#article-title-34}Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) &mgr;g/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.


Science of The Total Environment | 2013

Air-Pollution and Cardiometabolic Diseases (AIRCMD): A prospective study investigating the impact of air pollution exposure and propensity for type II diabetes

Zhichao Sun; Bhramar Mukherjee; Robert D. Brook; Geoffrey A. Gatts; Fumo Yang; Qinghua Sun; Jeffrey R. Brook; Zhongjie Fan; Sanjay Rajagopalan

There is a paucity of prospective cohort studies investigating the impact of environmental factors on the development of cardiometabolic (CM) disorders like type II diabetes (T2DM). The objective of the Air-Pollution and Cardiometabolic Diseases (AIRCMD) study is to investigate the impact of personal level air pollution measures [personal black carbon (BC)/sulfate measures] and ambient fine particulate matter [(PM2.5)/NO2] levels on propensity to type II diabetes in Beijing, China. Subjects with metabolic syndrome will undergo four repeated study visits within each season over a one year period following an initial screening visit. At each study visit, subjects will be monitored for sub-acute exposure to personal and ambient measures of air-pollution exposure and will undergo a series of functional CM outcomes. The primary endpoints include independent associations between integrated 5-day mean exposure to PM2.5 and BC and homeostasis model assessment of insulin resistance (HOMA-IR) measures, 24-hour mean diastolic and mean arterial pressure and endothelial-dependent vasodilatation. The secondary endpoints will explore the mechanistic explanation for a causal relationship between exposures and propensity for type II diabetes and will include additional functional outcomes such as arterial compliance, heart rate variability and plasma adipokines. The novel aspects of the study include the launch of infrastructure for future translational investigations in highly polluted urbanized environments and the creation of novel methodologies for linking personalized exposure measurements with functional CM outcomes. We believe that AIRCMD will allow for unprecedented new investigations into the association between environmental risk factors and CM disorders.


Hypertension | 2016

Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin ResistanceNovelty and Significance

Robert D. Brook; Zhichao Sun; Jeffrey R. Brook; Xiaoyi Zhao; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Xiaoquan Rao; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Qinghua Sun; Zhongjie Fan; Sanjay Rajagopalan

Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m3 and 0.2 to 24.5 µg/m3, respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3–3.7) to 2.7 (0.6–4.8) mm Hg per SD increase (67.2 µg/m3), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0–2.5) to 1.7 (0.3–3.2) mm Hg per SD increase (3.6 µg/m3). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01–0.36] and 0.22 [0.04–0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02–0.34] and 0.22 [0.08–0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.


Hypertension | 2014

Personal Black Carbon Exposure Influences Ambulatory Blood Pressure

Xiaoyi Zhao; Zhichao Sun; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Fumo Yang; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Jeffrey R. Brook; Qinghua Sun; Robert D. Brook; Sanjay Rajagopalan; Zhongjie Fan

Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution. # Novelty and Significance {#article-title-34}Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) &mgr;g/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.


Hypertension | 2014

Personal Black Carbon Exposure Influences Ambulatory Blood PressureNovelty and Significance

Xiaoyi Zhao; Zhichao Sun; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Fumo Yang; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Jeffrey R. Brook; Qinghua Sun; Robert D. Brook; Sanjay Rajagopalan; Zhongjie Fan

Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution. # Novelty and Significance {#article-title-34}Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) &mgr;g/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.


Hypertension | 2016

Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin ResistanceNovelty and Significance: The Air Pollution and Cardiometabolic Disease Study

Robert D. Brook; Zhichao Sun; Jeffrey R. Brook; Xiaoyi Zhao; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Xiaoquan Rao; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Qinghua Sun; Zhongjie Fan; Sanjay Rajagopalan

Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m3 and 0.2 to 24.5 µg/m3, respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3–3.7) to 2.7 (0.6–4.8) mm Hg per SD increase (67.2 µg/m3), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0–2.5) to 1.7 (0.3–3.2) mm Hg per SD increase (3.6 µg/m3). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01–0.36] and 0.22 [0.04–0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02–0.34] and 0.22 [0.08–0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.


Hypertension | 2015

Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance

Robert D. Brook; Zhichao Sun; Jeffrey R. Brook; Xiaoyi Zhao; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Xiaoquan Rao; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Qinghua Sun; Zhongjie Fan; Sanjay Rajagopalan

Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m3 and 0.2 to 24.5 µg/m3, respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3–3.7) to 2.7 (0.6–4.8) mm Hg per SD increase (67.2 µg/m3), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0–2.5) to 1.7 (0.3–3.2) mm Hg per SD increase (3.6 µg/m3). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01–0.36] and 0.22 [0.04–0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02–0.34] and 0.22 [0.08–0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.


Hypertension | 2014

Personal Black Carbon Exposure Influences Ambulatory Blood PressureNovelty and Significance: Air Pollution and Cardiometabolic Disease (AIRCMD-China) Study

Xiaoyi Zhao; Zhichao Sun; Yanping Ruan; Jianhua Yan; Bhramar Mukherjee; Fumo Yang; Fengkui Duan; Lixian Sun; Ruijuan Liang; Hui Lian; Shuyang Zhang; Quan Fang; Dongfeng Gu; Jeffrey R. Brook; Qinghua Sun; Robert D. Brook; Sanjay Rajagopalan; Zhongjie Fan

Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution. # Novelty and Significance {#article-title-34}Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four–hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) &mgr;g/m3. Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17–0.89 and 0.10–0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of −0.06 (95% confidence interval, 0.62–9.60 and −0.11 to −0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.

Collaboration


Dive into the Zhichao Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay Rajagopalan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Zhongjie Fan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixian Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Lian

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jianhua Yan

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ruijuan Liang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiaoyi Zhao

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge