Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhidan Tu is active.

Publication


Featured researches published by Zhidan Tu.


Stem Cells and Development | 2010

Mesenchymal Stem Cells Inhibit Complement Activation by Secreting Factor H

Zhidan Tu; Qing Li; Hong Bu; Feng Lin

Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities.


Investigative Ophthalmology & Visual Science | 2011

Retinal Pericytes Inhibit Activated T Cell Proliferation

Zhidan Tu; Y. Li; Dawn S. Smith; Nader Sheibani; Suber S. Huang; Timothy S. Kern; Feng Lin

PURPOSEnTo test the hypothesis that retinal pericytes (RPCs) are immunosuppressive; therefore, their loss of function under hyperglycemic conditions favors retinal inflammation and contributes to the pathogenesis of diabetic retinopathy (DR).nnnMETHODSnIsolated mouse and human RPCs were tested in T cell function assays to evaluate their capability of inhibiting T cell responses. To elucidate the underlying mechanisms, transwell systems, blocking mAbs against PD-L1 and IL-10 were used. The efficacy of RPCs in protecting retinal endothelial cells (RECs) from inflammation-induced apoptosis was assessed by apoptosis detection staining. Finally, to test whether hyperglycemic conditions impair the immunomodulatory activity of RPCs, RPCs pre-incubated in high glucose or methylglyoxal (MGO) were evaluated using the T cell proliferation assays.nnnRESULTSnRPCs profoundly inhibited activated T cell proliferation and inflammatory cytokine production. The T cell inhibitory activity of RPCs was decreased, but was not abolished, in transwell experiments. RPCs express PD-L1, and blocking PD-L1 reduced RPCs efficacy of T cell inhibition. RPCs also produce IL-10, and neutralization of IL-10 reduced their immunosuppressive activity. There were significantly reduced numbers of inflammation-induced apoptosis-detected RECs in the presence of RPCs. Incubation of RPCs with either high glucose or MGO reduced the activity of RPCs to inhibit activated T cell proliferation.nnnCONCLUSIONSnRPCs are highly immunosuppressive and they protected RECs from inflammation-mediated apoptosis. Hyperglycemic conditions impaired the T cell inhibitory activity of RPCs. These results reveal a new function of RPCs, and its regulation under hyperglycemic conditions. This may represent a novel mechanism by which RPCs contribute to preservation of retinal integrity in diseases, including DR.


Blood | 2010

Efficient osteoclast differentiation requires local complement activation

Zhidan Tu; Hong Bu; James E. Dennis; Feng Lin

Previous studies using blocking antibodies suggested that bone marrow (BM)-derived C3 is required for efficient osteoclast (OC) differentiation, and that C3 receptors are involved in this process. However, the detailed underlying mechanism and the possible involvement of other complement receptors remain unclear. In this report, we found that C3(-/-) BM cells exhibited lower RANKL/OPG expression ratios, produced smaller amounts of macrophage colony-stimulating factor and interleukin-6 (IL-6), and generated significantly fewer OCs than wild-type (WT) BM cells. During differentiation, in addition to C3, WT BM cells locally produced all other complement components required to activate C3 and to generate C3a/C5a through the alter-native pathway, which is required for efficient OC differentiation. Abrogating C3aR/C5aR activity either genetically or pharmaceutically suppressed OC generation, while stimulating WT or C3(-/-) BM cells with exogenous C3a and/or C5a augmented OC differentiation. Furthermore, supplementation with IL-6 rescued OC generation from C3(-/-) BM cells, and neutralizing antibodies to IL-6 abolished the stimulatory effects of C3a/C5a on OC differentiation. These data indicate that during OC differentiation, BM cells locally produce components, which are activated through the alternative pathway to regulate OC differentiation. In addition to C3 receptors, C3aR/C5aR also regulate OC differentiation, at least in part, by modulating local IL-6 production.


Journal of Immunology | 2014

Myeloid-Derived Suppressor Cells as a Potential Therapy for Experimental Autoimmune Myasthenia Gravis

Yan Li; Zhidan Tu; Shiguang Qian; John J. Fung; Sanford D. Markowitz; Linda L. Kusner; Henry J. Kaminski; Lina Lu; Feng Lin

We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell–dependent and B cell–mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)–specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro–activated B cells. Administering MDSCs into mice immunized with a T cell–independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell–induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis.


Investigative Ophthalmology & Visual Science | 2012

Myeloid Suppressor Cells Induced by Retinal Pigment Epithelial Cells Inhibit Autoreactive T-Cell Responses That Lead to Experimental Autoimmune Uveitis

Zhidan Tu; Y. Li; Dawn Smith; Catherine Doller; Sunao Sugita; Chi-Chao Chan; Shiguang Qian; John J. Fung; Rachel R. Caspi; Lina Lu; Feng Lin

PURPOSEnTo test whether retinal pigment epithelial (RPE) cells are able to induce myeloid-derived suppressor cell (MDSC) differentiation from bone marrow (BM) progenitors.nnnMETHODSnBM cells were cocultured with or without RPE cells in the presence of GM-CSF and IL-4. Numbers of resultant MDSCs were assessed by flow cytometry after 6 days of incubation. The ability of the RPE cell-induced MDSCs to inhibit T cells was evaluated by a CFSE-based T-cell proliferation assay. To explore the mechanism by which RPE cells induce MDSC differentiation, PD-L1-deficient RPE cells and blocking antibodies against TGF-β, CTLA-2α, and IL-6 were used. RPE cell-induced MDSCs were adoptively transferred into mice immunized with interphotoreceptor retinoid-binding protein in complete Freunds adjuvant to test their efficacy in suppressing autoreactive T-cell responses in experimental autoimmune uveitis (EAU).nnnRESULTSnRPE cells induced the differentiation of MDSCs. These RPE cell-induced MDSCs significantly inhibited T-cell proliferation in a dose-dependent manner. PD-L1-deficient RPE cells induced MDSC differentiation as efficiently as wild-type RPE cells, and neutralizing TGF-β or CTLA-2α did not alter the numbers of induced MDSCs. However, blocking IL-6 reduced the efficacy of RPE cell-induced MDSC differentiation. Finally, adoptive transfer of RPE cell-induced MDSCs suppressed IRBP-specific T-cell responses that led to EAU.nnnCONCLUSIONSnRPE cells induce the differentiation of MDSCs from bone marrow progenitors. Both cell surface molecules and soluble factors are important in inducing MDSC differentiation. PD-L1, TGF-β, and CTLA-2α were not measurably involved in RPE cell-induced MDSC differentiation, whereas IL-6 was important in the process. The induction of MDSCs could be another mechanism by which RPE cells control immune reactions in the retina, and RPE cell-induced MDSCs should be further investigated as a potential approach to therapy for autoimmune posterior uveitis.


Investigative Ophthalmology & Visual Science | 2009

Role of DAF in protecting against T-cell autoreactivity that leads to experimental autoimmune uveitis.

Fengqi An; Qing Li; Zhidan Tu; Hong Bu; Chi-Chao Chan; Rachel R. Caspi; Feng Lin

PURPOSEnTo investigate the role of decay-accelerating factor (DAF), a cell surface complement regulator that recently has been linked to T-cell responses and autoimmunity in the pathogenesis of experimental autoimmune uveitis (EAU).nnnMETHODSnEAU was induced in wild-type (WT) and Daf1(-/-) mice, and their disease severities, IRBP specific Th1/Th17 responses, and cytokine expression profiles were compared. In a test of the efficacy of treatment with soluble mouse DAF protein, EAU was induced in disease-susceptible B10.RIII mice, and they were treated with 0.5 mg soluble DAF protein or equal volume of PBS IP every other day. Retinal histology and IRBP-specific T-cell responses were compared after 14 days.nnnRESULTSnBoth EAU incidence and histopathology scores were significantly greater in Daf1(-/-) mice. There was a >10-fold greater mononuclear cell influx into the retina together with severe vasculitic lesions, retinal folding, and photoreceptor cell layer destruction. There were 5- to 7-fold greater Th1 and 3- to 4-fold greater Th17 responses against IRBP in Daf1(-/-) mice with EAU, and they expressed significantly elevated levels of GM-CSF, IL-2, IL-3, and IFN-gamma. WT B10.RIII mice that received soluble DAF protein treatments exhibited decreased IRBP-specific Th1/Th17 responses and were protected from retinal injury compared with the mice that received PBS treatments.nnnCONCLUSIONSnDAF significantly influences IRBP-specific Th1 and Th17 responses and disease severity in EAU. Systemic upregulation of DAF levels could be used to suppress retinal antigen(s)-specific autoimmunity to treat autoimmune posterior uveitis.


Journal of Neuroimmunology | 2011

Photoreceptor cells constitutively express functional TLR4

Zhidan Tu; Jose Andres C Portillo; Scott J. Howell; Hong Bu; Carlos S. Subauste; Muayyad R. Al-Ubaidi; Eric Pearlman; Feng Lin

Toll-like receptor 4 (TLR4) is expressed on a number of cells including neurons in the brain. However, it has yet to be determined if TLR4 is expressed on photoreceptor cells in the retina. In this report, we examined primary photoreceptor cells and an established photoreceptor cell line (661W). We found that functional TLR4 is constitutively expressed on photoreceptor cells, and can be activated by LPS. We conclude that TLR4 on photoreceptor cells could directly contribute to retinal inflammatory diseases and photoreceptor cell survival.


Immunobiology | 2011

Complement mediated hepatocytes injury in a model of autoantibody induced hepatitis

Zhidan Tu; Qing Li; Hong Shiue Chou; Ching Chuang Hsieh; Howard Meyerson; Marion G. Peters; Hong Bu; John J. Fung; Shiguang Qian; Lina Lu; Feng Lin

Despite multiple reports on autoantibody-initiated complement activation in autoimmune hepatitis (AIH), how does the humoral immunity contribute to the pathogenesis of AIH remained unclear. In this report, by adoptively transferring a polyclonal rabbit anti-OVA antibody into Hep-OVA Tg mice in which OVA is selectively expressed on the surface of hepatocytes, we found that excessive complement activation initiated by the autoantibody overwhelmed the protection of intrinsic cell surface complement regulators, and induced hepatocytes injury both in vitro and in vivo. The anti-OVA antibody induced hepatic injury in Hep-OVA Tg but not WT C57BL/6 mice as assessed by serum ALT levels and liver histopathology. Immunohistochemical analyses showed that after the antibody administration, there was massive complement activation on anti-OVA IgG coated hepatocytes in Hep-OVA Tg mice, but not in WT mice. Consistent with these results, depleting complement by cobra venom factor (CVF) prior to antibody injections protected Hep-OVA Tg mice from anti-OVA IgG induced hepatic injury. In addition, treating Hep-OVA Tg mice with recombinant mouse decay accelerating factor, a native complement inhibitor, protected them from autoantibody induced hepatitis. These results suggest that complement could play a pivotal role in liver specific autoantibody mediated hepatocyte injury in AIH, and that complement inhibitors could be, in principle, developed as novel therapeutics against AIH.


American Journal of Pathology | 2010

Tissue Distribution and Functional Analysis of Sushi Domain-Containing Protein 4

Zhidan Tu; Mark L. Cohen; Hong Bu; Feng Lin

Sushi domain-containing protein 4 (SUSD4) was a hypothetical cell surface protein whose tissue distribution and function were completely unknown. However, recent microarray-based studies have identified deletions of SUSD4 gene in patients with autism or Fryns syndrome, both of which are genetic diseases with severe abnormal neurological development and/or functions. In this article, we described the cloning, expression, refolding, tissue distribution, and functional analysis of this novel protein. Using polyclonal antibodies generated by immunizing chickens with the recombinant SUSD4, we found that SUSD4 is detectable in murine brains, eyes, spinal cords, and testis but not other tissues. In brains, SUSD4 is highly expressed in the white matter on oligodendrocytes/axons, and in eyes, it is exclusively expressed on the photoreceptor outer segments. In in vitro complement assays, SUSD4 augments the alternative but not the classical pathway of complement activation at the C3 convertase step. In in vivo studies, knocking down SUSD4 expression in zebrafish markedly increases ratios of mortality and developmental abnormality. These results provide the first insight into the important physiological roles of SUSD4 and could help to better understand the pathogenesis of autism and Fryns syndrome.


Archive | 2012

COMPOSITIONS AND METHODS FOR TREATING BONE CONDITIONS

Feng Lin; James E. Dennis; Zhidan Tu

Collaboration


Dive into the Zhidan Tu's collaboration.

Top Co-Authors

Avatar

Feng Lin

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hong Bu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

James E. Dennis

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Li

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Chao Chan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hong Bu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Nader Sheibani

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge