Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhidan Wu is active.

Publication


Featured researches published by Zhidan Wu.


Cell | 1998

A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis

Pere Puigserver; Zhidan Wu; Cheol Won Park; Reed A. Graves; Margaret Wright; Bruce M. Spiegelman

Adaptive thermogenesis is an important component of energy homeostasis and a metabolic defense against obesity. We have cloned a novel transcriptional coactivator of nuclear receptors, termed PGC-1, from a brown fat cDNA library. PGC-1 mRNA expression is dramatically elevated upon cold exposure of mice in both brown fat and skeletal muscle, key thermogenic tissues. PGC-1 greatly increases the transcriptional activity of PPARgamma and the thyroid hormone receptor on the uncoupling protein (UCP-1) promoter. Ectopic expression of PGC-1 in white adipose cells activates expression of UCP-1 and key mitochondrial enzymes of the respiratory chain, and increases the cellular content of mitochondrial DNA. These results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.


Cell | 1999

Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.

Zhidan Wu; Pere Puigserver; Ulf Andersson; Chen-Yu Zhang; Guillaume Adelmant; Vamsi K. Mootha; Amy E Troy; Saverio Cinti; Bradford B. Lowell; Richard C. Scarpulla; Bruce M. Spiegelman

Mitochondrial number and function are altered in response to external stimuli in eukaryotes. While several transcription/replication factors directly regulate mitochondrial genes, the coordination of these factors into a program responsive to the environment is not understood. We show here that PGC-1, a cold-inducible coactivator of nuclear receptors, stimulates mitochondrial biogenesis and respiration in muscle cells through an induction of uncoupling protein 2 (UCP-2) and through regulation of the nuclear respiratory factors (NRFs). PGC-1 stimulates a powerful induction of NRF-1 and NRF-2 gene expression; in addition, PGC-1 binds to and coactivates the transcriptional function of NRF-1 on the promoter for mitochondrial transcription factor A (mtTFA), a direct regulator of mitochondrial DNA replication/transcription. These data elucidate a pathway that directly links external physiological stimuli to the regulation of mitochondrial biogenesis and function.


Nature | 2002

Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres

Jiandie Lin; Hai Wu; Paul T. Tarr; Chen Yu Zhang; Zhidan Wu; Olivier Boss; Laura F. Michael; Pere Puigserver; Elji Isotani; Eric N. Olson; Bradford B. Lowell; Rhonda Bassel-Duby; Bruce M. Spiegelman

The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1α is expressed preferentially in muscle enriched in type I fibres. When PGC-1α is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1α transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1α activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1α is a principal factor regulating muscle fibre type determination.


Nature | 2001

Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1

J. Cliff Yoon; Pere Puigserver; Guoxun Chen; Jerry Donovan; Zhidan Wu; James Rhee; Guillaume Adelmant; John M. Stafford; C. Ronald Kahn; Daryl K. Granner; Christopher B. Newgard; Bruce M. Spiegelman

Blood glucose levels are maintained by the balance between glucose uptake by peripheral tissues and glucose secretion by the liver. Gluconeogenesis is strongly stimulated during fasting and is aberrantly activated in diabetes mellitus. Here we show that the transcriptional coactivator PGC-1 is strongly induced in liver in fasting mice and in three mouse models of insulin action deficiency: streptozotocin-induced diabetes, ob/ob genotype and liver insulin-receptor knockout. PGC-1 is induced synergistically in primary liver cultures by cyclic AMP and glucocorticoids. Adenoviral-mediated expression of PGC-1 in hepatocytes in culture or in vivo strongly activates an entire programme of key gluconeogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase, leading to increased glucose output. Full transcriptional activation of the PEPCK promoter requires coactivation of the glucocorticoid receptor and the liver-enriched transcription factor HNF-4α (hepatic nuclear factor-4α) by PGC-1. These results implicate PGC-1 as a key modulator of hepatic gluconeogenesis and as a central target of the insulin–cAMP axis in liver.


Cell | 2004

Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice

Jiandie Lin; Pei Hsuan Wu; Paul T. Tarr; Katrin S. Lindenberg; Julie St-Pierre; Chen Yu Zhang; Vamsi K. Mootha; Sibylle Jäger; Claudia R. Vianna; Richard M. Reznick; Libin Cui; Monia Manieri; Mi X. Donovan; Zhidan Wu; Marcus P. Cooper; Melina C. Fan; Lindsay M. Rohas; Ann Marie Zavacki; Saverio Cinti; Gerald I. Shulman; Bradford B. Lowell; Dimitri Krainc; Bruce M. Spiegelman

PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.


Molecular Cell | 1999

Cross-Regulation of C/EBPα and PPARγ Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity

Zhidan Wu; Evan D. Rosen; Regina P. Brun; Stefanie Hauser; Guillaume Adelmant; Amy E Troy; Catherine McKeon; Gretchen J. Darlington; Bruce M. Spiegelman

Abstract Mice deficient in C/EBPα have defective development of adipose tissue, but the precise role of C/EBPα has not been defined. Fibroblasts from C/EBPα(−/−) mice undergo adipose differentiation through expression and activation of PPARγ, though several clear defects are apparent. C/EBPα-deficient adipocytes accumulate less lipid, and they do not induce endogenous PPARγ, indicating that cross-regulation between C/EBPα and PPARγ is important in maintaining the differentiated state. The cells also show a complete absence of insulin-stimulated glucose transport, secondary to reduced gene expression and tyrosine phosphorylation for the insulin receptor and IRS-1. These results define multiple roles for C/EBPα in adipogenesis and show that cross-regulation between PPARγ and C/EBPα is a key component of the transcriptional control of this cell lineage.


Molecular Cell | 2001

Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPARγ Coactivator-1

Pere Puigserver; James Rhee; Jiandie Lin; Zhidan Wu; J. Cliff Yoon; Chen Yu Zhang; Stefan Krauss; Vamsi K. Mootha; Bradford B. Lowell; Bruce M. Spiegelman

Cachexia is a chronic state of negative energy balance and muscle wasting that is a severe complication of cancer and chronic infection. While cytokines such as IL-1alpha, IL-1beta, and TNFalpha can mediate cachectic states, how these molecules affect energy expenditure is unknown. We show here that many cytokines activate the transcriptional PPAR gamma coactivator-1 (PGC-1) through phosphorylation by p38 kinase, resulting in stabilization and activation of PGC-1 protein. Cytokine or lipopolysaccharide (LPS)-induced activation of PGC-1 in cultured muscle cells or muscle in vivo causes increased respiration and expression of genes linked to mitochondrial uncoupling and energy expenditure. These data illustrate a direct thermogenic action of cytokines and p38 MAP kinase through the transcriptional coactivator PGC-1.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1

Michael Lf; Zhidan Wu; Cheatham Rb; Pere Puigserver; Guillaume Adelmant; Lehman Jj; Kelly Dp; Bruce M. Spiegelman

Muscle tissue is the major site for insulin-stimulated glucose uptake in vivo, due primarily to the recruitment of the insulin-sensitive glucose transporter (GLUT4) to the plasma membrane. Surprisingly, virtually all cultured muscle cells express little or no GLUT4. We show here that adenovirus-mediated expression of the transcriptional coactivator PGC-1, which is expressed in muscle in vivo but is also deficient in cultured muscle cells, causes the total restoration of GLUT4 mRNA levels to those observed in vivo. This increased GLUT4 expression correlates with a 3-fold increase in glucose transport, although much of this protein is transported to the plasma membrane even in the absence of insulin. PGC-1 mediates this increased GLUT4 expression, in large part, by binding to and coactivating the muscle-selective transcription factor MEF2C. These data indicate that PGC-1 is a coactivator of MEF2C and can control the level of endogenous GLUT4 gene expression in muscle.


Molecular Cell | 2000

Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1.

María Monsalve; Zhidan Wu; Guillaume Adelmant; Pere Puigserver; Melina Fan; Bruce M. Spiegelman

Transcription and mRNA processing are coupled events in vivo, but the mechanisms that coordinate these processes are largely unknown. PGC-1 is a transcriptional coactivator that plays a major role in the regulation of adaptive thermogenesis. PGC-1 also has certain motifs characteristic of splicing factors. We demonstrate here that mutations in the serine- and arginine-rich domain and RNA recognition motif of PGC-1 interfere with the ability of PGC-1 to induce mRNAs of target genes. These mutations also disrupt the ability of PGC-1 to co-localize and associate with RNA processing factors. PGC-1 can alter the processing of an mRNA, but only when it is loaded onto the promoter of the gene. These data demonstrate the coordinated regulation of RNA transcription and processing through PGC-1.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells

Zhidan Wu; X. Huang; Y. Feng; Christoph Handschin; P. S. Gullicksen; O. Bare; M. Labow; Bruce M. Spiegelman; S. C. Stevenson

PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) is a master regulator of mitochondrial biogenesis and plays an important role in several other aspects of energy metabolism. To identify upstream regulators of PGC-1α gene transcription, 10,000 human full-length cDNAs were screened for induction of the PGC-1α promoter. A number of activators of PGC-1α transcription were found; the most potent activator was the transducer of regulated CREB (cAMP response element-binding protein) binding protein (TORC) 1, a coactivator of CREB. The other two members of the TORC family, TORC2 and TORC3, also strongly activated PGC-1α transcription. TORCs dramatically induced PGC-1α gene transcription through CREB. Forced expression of TORCs in primary muscle cells induced the endogenous mRNA of PGC-1α and its downstream target genes in the mitochondrial respiratory chain and TCA cycle. Importantly, these changes in gene expression resulted in increased mitochondrial oxidative capacity measured by cellular respiration and fatty acid oxidation. Finally, we demonstrated that the action of TORCs in promoting mitochondrial gene expression and function requires PGC-1α. Previous studies had indicated that TORCs function as a calcium- and cAMP-sensitive coincidence detector and mediate individual and synergistic effects of these two pathways. Our results, together with previous findings, strongly suggest that TORCs play a key role in linking these external signals to the transcriptional program of adaptive mitochondrial biogenesis by activating PGC-1α gene transcription.

Collaboration


Dive into the Zhidan Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradford B. Lowell

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Yu Zhang

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul T. Tarr

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge