Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhidong Hu is active.

Publication


Featured researches published by Zhidong Hu.


Journal of Antimicrobial Chemotherapy | 2015

A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin

Yang Wang; Yuan Lv; Jiachang Cai; Stefan Schwarz; Lanqing Cui; Zhidong Hu; Rong Zhang; Jun Li; Qin Zhao; Tao He; Dacheng Wang; Zheng Wang; Yingbo Shen; Yun Li; Andrea T. Feßler; Congming Wu; Hao Yu; Xuming Deng; Xi Xia; Jianzhong Shen

OBJECTIVES The oxazolidinone-resistant Enterococcus faecalis E349 from a human patient tested negative for the cfr gene and 23S rRNA mutations. Here we report the identification of a novel oxazolidinone resistance gene, optrA, and a first investigation of the extent to which this gene was present in E. faecalis and Enterococcus faecium from humans and food-producing animals. METHODS The resistance gene optrA was identified by whole-plasmid sequencing and subsequent cloning and expression in a susceptible Enterococcus host. Transformation and conjugation assays served to investigate the transferability of optrA. All optrA-positive E. faecalis and E. faecium isolates of human and animal origin were analysed for their MICs and their genotype, as well as the location of optrA. RESULTS The novel plasmid-borne ABC transporter gene optrA from E. faecalis E349 conferred combined resistance or elevated MICs (when no clinical breakpoints were available) to oxazolidinones (linezolid and tedizolid) and phenicols (chloramphenicol and florfenicol). The corresponding conjugative plasmid pE349, on which optrA was located, had a size of 36 331 bp and also carried the phenicol exporter gene fexA. The optrA gene was functionally expressed in E. faecalis, E. faecium and Staphylococcus aureus. It was detected more frequently in E. faecalis and E. faecium from food-producing animals (20.3% and 5.7%, respectively) than from humans (4.2% and 0.6%, respectively). CONCLUSIONS Enterococci with elevated MICs of linezolid and tedizolid should be tested not only for 23S rRNA mutations and the gene cfr, but also for the novel resistance gene optrA.


Journal of Clinical Microbiology | 2012

In Vitro Susceptibilities of Yeast Species to Fluconazole and Voriconazole as Determined by the 2010 National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study

He Wang; Meng Xiao; Sharon C.-A. Chen; Fanrong Kong; Ziyong Sun; Kang Liao; Juan Lu; Haifeng Shao; Yan Yan; Hong Fan; Zhidong Hu; Yunzhuo Chu; Tie-Shi Hu; Yuxing Ni; Gui-Ling Zou; Ying-Chun Xu

ABSTRACT We conducted active, laboratory-based surveillance for isolates from patients with invasive infections across China from August 2009 to July 2010. DNA sequencing methods were used to define species, and susceptibility to fluconazole and voriconazole was determined by the Clinical and Laboratory Standards Institute M44-A2 disk diffusion method but using up-to-date clinical breakpoints or epidemiological cutoff values. Candida spp. made up 90.5% of the 814 yeast strains isolated, followed by Cryptococcus neoformans (7.7%) and other non-Candida yeast strains (1.7%). Bloodstream isolates made up 42.9% of the strains, isolates from ascitic fluid made up 22.1%, but pus/tissue specimens yielded yeast strains in <5% of the cases. Among the Candida isolates, Candida albicans was the most common species from specimens other than blood (50.1%) but made up only 23% of the bloodstream isolates (P < 0.001). C. parapsilosis complex species were the most common Candida isolates from blood (33.2%). Uncommon bloodstream yeast strains included Trichosporon spp., C. pelliculosa, and the novel species C. quercitrusa, reported for the first time as a cause of candidemia. Most (>94%) of the isolates of C. albicans, C. tropicalis, and the C. parapsilosis complex were susceptible to fluconazole and voriconazole, as were all of the Trichosporon strains; however, 12.2% of the C. glabrata sensu stricto isolates were fluconazole resistant and 17.8% had non-wild-type susceptibility to voriconazole. Seven C. tropicalis strains were cross-resistant to fluconazole and voriconazole; six were from patients in the same institution. Resistance to fluconazole and voriconazole was seen in 31.9% and 13.3% of the uncommon Candida and non-Candida yeast strains, respectively. Causative species and azole susceptibility varied with the geographic region. This study provided clinically useful data on yeast strains and their antifungal susceptibilities in China.


Journal of Antimicrobial Chemotherapy | 2015

Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance

Meng Xiao; Xin Fan; Sharon C.-A. Chen; He Wang; Ziyong Sun; Kang Liao; Shulan Chen; Yan Yan; Mei Kang; Zhidong Hu; Yunzhuo Chu; Tie-Shi Hu; Yuxing Ni; Gui-Ling Zou; Fanrong Kong; Ying-Chun Xu

OBJECTIVES To define the antifungal susceptibility patterns of the most common non-albicans Candida spp. in China. METHODS We evaluated the susceptibilities to nine antifungal drugs of Candida parapsilosis species complex, Candida tropicalis, Candida glabrata species complex and Candida krusei isolates from patients with invasive candidiasis at 11 hospitals over 3 years. Isolates were identified by MALDI-TOF MS supplemented by DNA sequencing. MICs were determined by Sensititre YeastOne(TM) using current clinical breakpoints/epidemiological cut-off values to assign susceptibility (or WT), and by CLSI M44-A2 disc diffusion for fluconazole and voriconazole. RESULTS Of 1072 isolates, 392 (36.6%) were C. parapsilosis species complex. C. tropicalis, C. glabrata species complex and C. krusei comprised 35.4%, 24.3% and 3.7% of the isolates, respectively. Over 99.3% of the isolates were of WT phenotype to amphotericin B and 5-flucytosine. Susceptibility/WT rates to azoles among C. parapsilosis species complex were ≥97.5%. However, 11.6% and 9.5% of C. tropicalis isolates were non-susceptible to fluconazole and voriconazole, respectively (7.1% were resistant to both). Approximately 14.3% of C. glabrata sensu stricto isolates (n = 258) were fluconazole resistant, and 11.6% of C. glabrata sensu stricto isolates were cross-resistant to fluconazole and voriconazole. All C. krusei isolates were susceptible/WT to voriconazole, posaconazole and itraconazole. Overall, 97.7%-100% of isolates were susceptible to caspofungin, micafungin and anidulafungin, but 2.3% of C. glabrata were non-susceptible to anidulafungin. There was no azole/echinocandin co-resistance. Disc diffusion and Sensititre YeastOne(TM) methods showed >95% categorical agreement for fluconazole and voriconazole. CONCLUSIONS In summary, reduced azole susceptibility was seen among C. tropicalis. Resistance to echinocandins was uncommon.


Microbes and Infection | 2015

Bacterial-resistance among outpatients of county hospitals in China: significant geographic distinctions and minor differences between central cities.

Yonghong Xiao; Zeqing Wei; Ping Shen; Jinru Ji; Ziyong Sun; Hua Yu; Tiantuo Zhang; Ping Ji; Yuxing Ni; Zhidong Hu; Yunzhuo Chu; Lanjuan Li

The purpose of this study was to survey antibacterial resistance in outpatients of Chinese county hospitals. A total of 31 county hospitals were selected and samples continuously collected from August 2010 to August 2011. Drug sensitivity testing was conducted in a central laboratory. A total of 2946 unique isolates were collected, including 634 strains of Escherichia coli, 606 Klebsiella pneumoniae, 476 Staphylococcus aureus, 308 Streptococcus pneumoniae, and 160 Haemophilus influenzae. Extended-spectrum β-lactamases were detected in E. coli (42.3% strains), K. pneumoniae (31.7%), and Proteus mirabilis (39.0%). Ciprofloxacin-resistance was detected in 51.0% of E. coli strains. Salmonella spp. and Shigella spp. were sensitive to most antibacterial agents. Less than 8.0% of Pseudomonas aeruginosa isolates were resistant to carbapenem. For S. aureus strains, 15.3% were resistant to methicillin, and some strains of S. pneumoniae showed resistance to penicillin (1.6%), ceftriaxone (13.0%), and erythromycin (96.4%). β-lactamase was produced by 96.5% of Moraxella catarrhalis strains, and 36.2% of H. influenzae isolates were resistant to ampicillin. Azithromycin-resistant H. influenzae, imipenem-resistant but meropenem-sensitive Proteus, and ceftriaxone- and carbapenem non-sensitive M. catarrhalis were recorded. In conclusion, cephalosporin- and quinolone-resistant strains of E. coli and Klebsiella pneumonia and macrolide-resistant Gram-positive cocci were relatively prominent in county hospitals. The antibacterial resistance profiles of isolates from different geographical locations varied significantly, with proportions in county hospitals lower than those in their tertiary counterparts in the central cities, although the difference is diminishing.


Frontiers in Microbiology | 2017

Molecular Epidemiology and Antifungal Susceptibility of Candida glabrata in China (August 2009 to July 2014): A Multi-Center Study

Xin Hou; Meng Xiao; Sharon C.-A. Chen; Fanrong Kong; He Wang; Yunzhuo Chu; Mei Kang; Ziyong Sun; Zhidong Hu; Ruoyu Li; Juan Lu; Kang Liao; Tie-Shi Hu; Yuxing Ni; Gui-Ling Zou; Ge Zhang; Xin Fan; Yu-Pei Zhao; Ying-Chun Xu

Candida glabrata is an increasingly important cause of invasive candidiasis. In China, relatively little is known of the molecular epidemiology of C. glabrata and of its antifungal susceptibility patterns. Here we studied 411 non-duplicate C. glabrata isolates from 411 patients at 11 hospitals participating in the National China Hospital Invasive Fungal Surveillance Net program (CHIF-NET; 2010-2014). Genotyping was performed using multilocus sequence typing (MLST) employing six genetic loci and by microsatellite analysis. Antifungal susceptibility testing was performed using Sensititre YeastOne™ YO10 methodology. Of 411 isolates, 35 sequence types (ST) were identified by MLST and 79 different genotypes by microsatellite typing; the latter had higher discriminatory power than MLST in the molecular typing of C. glabrata. Using MLST, ST7 and ST3 were the most common STs (66.4 and 9.5% of all isolates, respectively) with 24 novel STs identified; the most common microsatellite types were T25 (30.4% of all isolates) and T31 (12.4%). Resistance to fluconazole (MIC > 32 μg/mL) was seen in 16.5% (68/411) of isolates whilst MICs of >0.5 μg/mL for voriconazole, >2 μg/mL for itraconazole and >2 μg/mL for posaconazole were seen for 28.7, 6.8, and 7.3% of isolates, respectively; 14.8% of all isolates cross-resistant/non-wide-type to fluconazole and voriconazole. Fluconazole resistant rates increased 3-fold over the 5-year period whilst that of isolates with non-WT MICs to voriconazole, 7-fold. All echinocandins exhibited >99% susceptibility rates against all isolates but notably one isolate exhibited multi-drug resistance to the azoles and echinocandins. The study has provided a global picture of the molecular epidemiology and drug resistance rates of C. glabrata in China during the period of the study.


Journal of Medical Microbiology | 2016

In vitro activities of tedizolid compared with other antibiotics against Gram-positive pathogens associated with hospital-acquired pneumonia, skin and soft tissue infection and bloodstream infection collected from 26 hospitals in China

Li S; Guo Y; Chunjiang Zhao; Chen H; Bijie Hu; Yunzhuo Chu; Zhang Z; Hu Y; Liu Z; Du Y; Gui Q; Ping Ji; Ji Zeng; Bin Cao; Fu Q; Rong Zhang; Wang Z; Chao Zhuo; Xianju Feng; Jia W; Jin Y; Xuesong Xu; Kang Liao; Yuxing Ni; Yunsong Yu; Zhidong Hu; Lei Je; Qiang Yang; Hui Wang

To evaluate the in vitro antimicrobial activities of tedizolid, linezolid and other comparators against clinically significant Gram-positive cocci isolates from hospital-acquired pneumonia (HAP), skin and soft tissue infection (SSTI) and bloodstream infection (BSI), 2140 nonduplicate isolates (23.7 % isolated from HAP, 46.8 % from SSTI and 29.5 % from BSI) were consecutively collected in 26 hospitals in 17 cities across China during 2014. These pathogens included 632 methicillin-resistant Staphylococcus aureus, 867 methicillin-sensitive Staphylococcusaureus, 299 coagulase-negative Staphylococcus (CoNS), 104 Enterococcus faecalis, 99 Enterococcusfaecium, 13 Streptococcus pneumoniae, 23 α-haemolytic Streptococcus and 103 β-haemolytic Streptococcus. MICs of routine clinical antibiotics were determined by broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines 2015. Tedizolid, linezolid, vancomycin, daptomycin, teicoplanin and tigecycline showed high in vitro activity against Gram-positive pathogens (≥98.0 % susceptible), and tedizolid exhibited four- to eight fold greater activity than linezolid against the pathogens tested, with MIC90s of methicillin-resistant Staphylococcus aureus, α-haemolytic Streptococcus and β-haemolytic Streptococcus (0.25 vs 2 µg ml-1); methicillin-sensitive Staphylococcu saureus, E. faecalis and E. faecium (0.5 vs 2 µg ml-1); methicillin-resistant CoNS and methicillin-sensitive CoNS (0.25 vs 1 µg ml-1); and Streptococcuspneumoniae (0.125 vs 0.5 µg ml-1). Tedizolid MIC90s associated with different infections did not show significant differences, and the drug exhibited excellent activity against surveyed Gram-positive pathogens associated with HAP, SSTI and BSI, including linezolid-nonsusceptible strains. These data suggest that tedizolid could be an alternative to linezolid for the treatment of infections caused by Gram-positive organisms.


BMC Infectious Diseases | 2017

Update of incidence and antimicrobial susceptibility trends of Escherichia coli and Klebsiella pneumoniae isolates from Chinese intra-abdominal infection patients

Hui Zhang; Qiwen Yang; Kang Liao; Yuxing Ni; Yunsong Yu; Bijie Hu; Ziyong Sun; Wenxiang Huang; Yong Wang; Anhua Wu; Xianju Feng; Yanping Luo; Yunzhuo Chu; Shulan Chen; Bin Cao; Jianrong Su; Qiong Duan; Shufang Zhang; Haifeng Shao; Haishen Kong; Bingdong Gui; Zhidong Hu; Robert E. Badal; Ying-Chun Xu

BackgroundTo evaluate in vitro susceptibilities of aerobic and facultative Gram-negative bacterial (GNB) isolates from intra-abdominal infections (IAIs) to 12 selected antimicrobials in Chinese hospitals from 2012 to 2014.MethodsHospital acquired (HA) and community acquired (CA) IAIs were collected from 21 centers in 16 Chinese cities. Extended spectrum beta-lactamase (ESBL) status and antimicrobial susceptibilities were determined at a central laboratory using CLSI broth microdilution and interpretive standards.ResultsFrom all isolated strains the Enterobacteriaceae (81.1%) Escherichia coli accounted for 45.4% and Klebsiella pneumoniae for 20.1%, followed by Enterobacter cloacae (5.2%), Proteus mirabilis (2.1%), Citrobacter freundii (1.8%), Enterobacter aerogenes (1.8%), Klebsiella oxytoca (1.4%), Morganella morganii (1.2%), Serratia marcescens (0.7%), Citrobacter koseri (0.3%), Proteus vulgaris (0.3%) and others (1.0%). Non- Enterobacteriaceae (18.9%) included Pseudomonas aeruginosa (9.8%), Acinetobacter baumannii (6.7%), Stenotrophomonas maltophilia (0.9%), Aeromonas hydrophila (0.4%) and others (1.1%). ESBL-screen positive Escherichia coli isolates (ESBL+) showed a decreasing trend from 67.5% in 2012 to 58.9% in 2014 of all Escherichia coli isolates and the percentage of ESBL+ Klebsiella pneumoniae isolates also decreased from 2012 through 2014 (40.4% to 26.6%), which was due to reduced percentages of ESBL+ isolates in HA IAIs for both bacteria. The overall susceptibilities of all 5160 IAI isolates were 87.53% to amikacin (AMK), 78.12% to piperacillin-tazobactam (TZP) 81.41% to imipenem (IMP) and 73.12% to ertapenem (ETP). The susceptibility of ESBL-screen positive Escherichia coli strains was 96.77%–98.8% to IPM, 91.26%–93.16% to ETP, 89.48%–92.75% to AMK and 84.86%–89.34% to TZP, while ESBL-screen positive Klebsiella pneumoniae strains were 70.56%–80.15% susceptible to ETP, 80.0%–87.5% to IPM, 83.82%–87.06% to AMK and 63.53%–68.38% to TZP within the three year study. Susceptibilities to all cephalosporins and fluoroquinolones were less than 50% beside 66.5% and 56.07% to cefoxitin (FOX) for ESBL+ Escherichia coli and Klebsiella pneumoniae strains respectively.ConclusionsThe total ESBL+ rates decreased in Escherichia coli and Klebsiella pneumoniae IAI isolates due to fewer prevalence in HA infections. IPM, ETP and AMK were the most effective antimicrobials against ESBL+ Escherichia coli and Klebsiella pneumoniae IAI isolates in 2012–2014 and a change of fluoroquinolone regimens for Chinese IAIs is recommended.


BMC Infectious Diseases | 2017

Antimicrobial susceptibilities of aerobic and facultative gram-negative bacilli isolated from Chinese patients with urinary tract infections between 2010 and 2014

Qiwen Yang; Hui Zhang; Yao Wang; Zhi-Peng Xu; Ge Zhang; Xinxin Chen; Ying-Chun Xu; Bin Cao; Haishen Kong; Yuxing Ni; Yunsong Yu; Ziyong Sun; Bijie Hu; Wenxiang Huang; Yong Wang; Anhua Wu; Xianju Feng; Kang Liao; Yanping Luo; Zhidong Hu; Yunzhuo Chu; Juan Lu; Jianrong Su; Bingdong Gui; Qiong Duan; Shufang Zhang; Haifeng Shao; Robert E. Badal


BMC Infectious Diseases | 2017

Serotype distribution and antibiotic resistance of Streptococcus pneumoniae isolates from 17 Chinese cities from 2011 to 2016

Chunjiang Zhao; Zongbo Li; Feifei Zhang; Xiaobing Zhang; Ping Ji; Ji Zeng; Bijie Hu; Zhidong Hu; Kang Liao; Hongli Sun; Rong Zhang; Bin Cao; Chao Zhuo; Wei Jia; Yaning Mei; Yunzhuo Chu; Xuesong Xu; Qing Yang; Yan Jin; Quan Fu; Xiuli Xu; Hongling Li; Lijun Wang; Yuxing Ni; Hongjie Liang; Hui Wang


Archive | 2017

In vitro analysis of activities of antimicrobial agents against clinical common organisms causing bloodstream infections, hospital-acquired pneumonia and intra-abdominal infections from twelve teaching hospitals in China: results from the Chinese antimicrobial resistance surveillance of nosocomial infections (CARES) program

Henan t Li; Chunjiang Zhao; Qi Wang; Ji Zeng; Yan Jin; Zhidong Hu; Kang Liao; Yanping Luo; Chao Zhuo; Rong Zhang; Xiuli Xu; Wenen Liu; Yingmei Liu; Yunzhuo Chu; Hui Wang

Collaboration


Dive into the Zhidong Hu's collaboration.

Top Co-Authors

Avatar

Kang Liao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yuxing Ni

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ziyong Sun

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ying-Chun Xu

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Cao

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Zhuo

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gui-Ling Zou

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge