Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhidong Xu is active.

Publication


Featured researches published by Zhidong Xu.


Clinical Nutrition | 2010

Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth

Kevin A. Harvey; Candace L. Walker; Thomas M. Pavlina; Zhidong Xu; Gary P. Zaloga; Rafat A. Siddiqui

BACKGROUND & AIMS Saturated fatty acids (SFAs), significant components of enteral and parenteral formulations, have been linked to cardiovascular complications. However, the effect of SFAs upon vascular inflammation is less clear. Endothelial cells (EC) play an important role in the acute inflammatory responses. We, therefore, evaluated the acute effects of different chain-length SFAs upon EC functions. METHODS Endothelial cells were cultured with various SFAs. Growth and cytotoxicity were determined by WST-1 assay. Apoptosis and pro-inflammatory adhesion molecule (ICAM-1) expression was assayed using flow cytometry. Activation of NF-kappaB was analyzed using western blot analysis. RESULTS Long-chain SFAs (C14:0-C20:0) inhibited EC growth in a chain-length dependent manner. Medium-chain SFAs (C6:0-C12:0) did not significantly affect EC growth. In contrast, the short-chain SFA (C4:0) stimulated cellular growth. Stearic acid induced significantly more EC apoptosis and necrosis than palmitic acid or myristic acids. Stearic acid (>10muM) treatment also significantly increased ICAM-1 expression. Stearic acids pro-inflammatory response was confirmed by phosphorylation of IkappaB-alpha and NF-kappaB in a dose dependent manner. CONCLUSIONS Long-chain SFAs can induce pro-inflammatory responses and significantly impact growth and viability of EC. Our data suggest that the presence of long-chain SFAs in parenteral formulations may have harmful effects on the vascular system.


Journal of Lipid Research | 2010

Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells

Kevin A. Harvey; Candace L. Walker; Zhidong Xu; Phillip Whitley; Thomas M. Pavlina; Mary Hise; Gary P. Zaloga; Rafat A. Siddiqui

Saturated fatty acids (SFAs), significant components of both enteral/parenteral nutritional formulations (including diet), are linked to cardiovascular disease complications, such as atherosclerosis. We investigated whether oleic acid (C18:1n-9) reduces the growth inhibitory and pro-inflammatory effects of the stearic acid (C18:0) in human aortic endothelial cells (HAEC). Stearic acid induced growth inhibition at concentrations less than 50 μM, whereas higher concentrations invoked cytotoxicity. Stearic acid-induced growth inhibition and cytotoxic effects were eradicated upon cosupplementation with oleic acid (25 μM). Oleic acid (as low as 5 μM) also inhibited the stearic acid-induced increase in intercellular adhesion molecule-1 (ICAM-1) expression. Stearic acid-induced phosphorylation of nuclear factor-kappa B (NF-κB), a transcriptional regulator of ICAM-1, was also reduced by oleic acid. HAECs supplemented with either stearic or oleic acid resulted in cellular incorporation of C18:0 and C18:1n-9, respectively. Stearic acid primarily incorporated into phospholipids without increasing the total fatty acid content in HAECs. In contrast, oleic acid, with or without stearic acid, incorporated into both phospholipids and triglycerides, with a significant increase in total fatty acid amounts in triglycerides. Our data suggest that oleic acid has the ability to reduce the inflammatory effects of long-chain SFAs in HAECs through reducing cellular stearic acid incorporation and NF-κB activation.


BMC Cancer | 2011

A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

Jeffrey D. Altenburg; Andrew A. Bieberich; Colin Terry; Kevin A. Harvey; Justin F VanHorn; Zhidong Xu; V. Jo Davisson; Rafat A. Siddiqui

BackgroundBreast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone.MethodsDose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED50. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC.ResultsCCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER- PR- Her2+) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes involved in cancer development and progression, metastasis, and cell cycle progression were downregulated. Cellular pools of PPARγ and phospho-p53 were increased by CCM+DHA relative to either compound alone. DHA enhanced cellular uptake of CCM in SK-BR-3 cells without significantly enhancing CCM uptake in other cell lines.ConclusionsThe combination of DHA and CCM is potentially a dietary supplemental treatment for some breast cancers, likely dependent upon molecular phenotype. DHA enhancement of cellular curcumin uptake is one potential mechanism for observed synergy in SK-BR-3 cells; however, transcriptomic data show that the antiproliferation synergy accompanies many signaling events unique to the combined presence of the two compounds.


Nutrients | 2012

Steroidal Compounds in Commercial Parenteral Lipid Emulsions

Zhidong Xu; Kevin A. Harvey; Thomas M. Pavlina; Guy Dutot; Mary Hise; Gary P. Zaloga; Rafat A. Siddiqui

Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.


European Journal of Lipid Science and Technology | 2015

Tocopherol and tocotrienol homologs in parenteral lipid emulsions

Zhidong Xu; Kevin A. Harvey; Thomas M. Pavlina; Gary P. Zaloga; Rafat A. Siddiqui

Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements.


Biochemical and Biophysical Research Communications | 2011

A novel 2,6-diisopropylphenyl–docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

Jeffrey D. Altenburg; Kevin A. Harvey; Sharon McCray; Zhidong Xu; Rafat A. Siddiqui

We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.


Lipids in Health and Disease | 2015

Modulation of endothelial cell integrity and inflammatory activation by commercial lipid emulsions

Kevin A. Harvey; Zhidong Xu; Thomas M. Pavlina; Gary P. Zaloga; Rafat A. Siddiqui

BackgroundThrombosis and immune dysfunction are two important complications that result from the administration of parenteral nutrition. Endothelial cells within the vasculature are crucial components necessary for maintenance of normal coagulation and immune function.MethodsWe compared the effects of three commercial lipid emulsions (LEs; Intralipid®, ClinOleic® [or Clinolipid®], and Omegaven®) differing in the levels of omega-6 polyunsaturated fatty acids, omega-3 polyunsaturated fatty acids, omega-9 monounsaturated fatty acids, and saturated fatty acids upon endothelial cell fatty acid composition using Gas chromatography, endothelial cell integrity by assessing measurement of apoptosis and necrosis using flow cytometry, endothelial cell inflammatory activation by assessing the induction of ICAM-1 by lipopolysaccharide [LPS]), and transcription factor activation (phosphorylation of NF-κB) using western blot analysis.ResultsGas chromatographic analysis confirmed cellular uptake of the fatty acids within the LEs; furthermore, these fatty acid changes reflected the composition of the oils and egg phosphatides used in the manufacturing of these emulsions. However, the kinetics of fatty acid uptake and processing differed between LEs. Fish oil LE negatively impacted cell viability by doubling the percentage of apoptotic and necrotic cell populations quantified by flow cytometry using Annexin V/Fluorescein and propidium iodide. The soybean oil LE did not alter cell viability, while the olive oil-predominate emulsion improved cell viability. All LEs were capable of suppressing LPS-induced ICAM-1 expression; however, the fish oil LE was more potent than the other emulsions. Fish oil LE supplementation of cells also suppressed LPS-induced phosphorylation of NF-κB, while the soybean oil and olive predominant LE had no effect upon NF-κB phosphorylation.ConclusionsLipid emulsions are readily incorporated and stored in the form of triacylglycerols. Soybean oil-based, olive oil-predominant and fish-oil based LEs differentially affected endothelial cell integrity. Importantly, these three LEs were capable of suppressing endothelial cell inflammatory response despite their fatty acid content.


Bioorganic & Medicinal Chemistry | 2014

Characterization of lovastatin–docosahexaenoate anticancer properties against breast cancer cells

Rafat A. Siddiqui; Kevin A. Harvey; Zhidong Xu; Selvamuthu K. Natarajan; V. Jo Davisson

Lovastatin (LOV) and docosahexaenoic acid (DHA), besides improving cardiovascular functions, are also known for their anticancer activities. However, use of these compounds for treating or preventing cancer is limited because of their efficacies. The approach pursued involved chemical linkage of these two chemotypes. A lovastatin-docosahexaenoate (LOV-DHA) conjugate was prepared and tested against selected breast tumor cells lines with differential expression of estrogen receptors (ER) and Heregulin-2 (Her-2). The LOV-DHA conjugate exhibited superior cytotoxic effects against ER(-)/Her-2(-) cell lines (MDA-MB-231 and MDA-MB-468), which were not observed with DHA or lovastatin alone, or in combination. Lovastatin supplementation arrested cells in the G₀/G₁ phase and enhanced expression levels of p21, whereas the conjugate did not demonstrate cell cycle arrest nor increased p21 expression. The LOV-DHA conjugate induced significant (P<0.05) apoptosis as low as 1 μM, whereas DHA and lovastatin were ineffective at this concentration. The growth inhibitory effects of lovastatin were reversed by the addition of mevalonate, whereas mevalonate had no effect on the LOV-DHA conjugate-induced growth inhibition in MDA-MB-231 cells. Furthermore, the LOV-DHA conjugates were stable in mouse serum and intracellularly in MDA-MB-231 cells. These data suggest that the LOV-DHA conjugate mediated its effects through a HMG-CoA reductase-independent pathway and exerted significantly (P<0.05) higher anticancer effects in breast cancer cells than lovastatin or DHA alone.


Journal of Inflammation Research | 2012

Attenuation of niacin-induced prostaglandin D 2 generation by omega-3 fatty acids in THP-1 macrophages and Langerhans dendritic cells

Justin VanHorn; Jeffrey D Altenburg; Kevin A. Harvey; Zhidong Xu; Richard J. Kovacs; Rafat A. Siddiqui

Niacin, also known as nicotinic acid, is an organic compound that has several cardio-beneficial effects. However, its use is limited due to the induction of a variable flushing response in most individuals. Flushing occurs from a niacin receptor mediated generation of prostaglandins from arachidonic acid metabolism. This study examined the ability of docosahexaenoic acid, eicosapentaenoic acid, and omega-3 polyunsaturated fatty acids (PUFAs), to attenuate niacin-induced prostaglandins in THP-1 macrophages. Niacin induced both PGD2 and PGE2 generation in a dose-dependent manner. Niacin also caused an increase in cytosolic calcium and activation of cytosolic phospholipase A2. The increase in PGD2 and PGE2 was reduced by both docosahexaenoic acid and eicosapentaenoic acid, but not by oleic acid. Omega-3 PUFAs efficiently incorporated into cellular phospholipids at the expense of arachidonic acid, whereas oleic acid incorporated to a higher extent but had no effect on arachidonic acid levels. Omega-3 PUFAs also reduced surface expression of GPR109A, a human niacin receptor. Furthermore, omega-3 PUFAs also inhibited the niacin-induced increase in cytosolic calcium. Niacin and/or omega-3 PUFAs minimally affected cyclooxygenase-1 activity and had no effect on cyclooxygenase -2 activity. The effects of niacin on PGD2 generation were further confirmed using Langerhans dendritic cells. Results of the present study indicate that omega-3 PUFAs reduced niacin-induced prostaglandins formation by diminishing the availability of their substrate, as well as reducing the surface expression of niacin receptors. In conclusion, this study suggests that the regular use of omega-3 PUFAs along with niacin can potentially reduce the niacin-induced flushing response in sensitive patients.


Journal of Parenteral and Enteral Nutrition | 2016

Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion

Zhidong Xu; Kevin A. Harvey; Thomas M. Pavlina; Gary P. Zaloga; Rafat A. Siddiqui

BACKGROUND Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. MATERIALS AND METHODS The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. RESULTS The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. CONCLUSION Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation.

Collaboration


Dive into the Zhidong Xu's collaboration.

Top Co-Authors

Avatar

Kevin A. Harvey

Indiana University Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Terry

Indiana University Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge