Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhifeng Xu is active.

Publication


Featured researches published by Zhifeng Xu.


Biosensors and Bioelectronics | 2013

Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan

Junhua Li; Daizhi Kuang; Yonglan Feng; Fuxing Zhang; Zhifeng Xu; Mengqin Liu; Deping Wang

A new kind of nanocomposite based on silver nanoparticles (AgNPs)/graphene oxide (GO) was conveniently achieved through a green and low-cost synthesis approach using glucose as a reducing and stabilizing agent, and the synthetic procedure can be easily used for the construction of a disposable electrochemical sensor on glassy carbon electrode (GCE). The nanocomposite was detailedly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The experimental results demonstrated that the nanocomposite possessed the specific features of both silver nanoparticles and graphene, and the intrinsic high specific area and the fast electron transfer rate ascribed to the nanohybrid structure could improve its electrocatalytic performance greatly. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to evaluate the electrochemical properties of AgNPs/GO/GCE towards tryptophan, and the AgNPs/GO film exhibited a distinctly higher activity for the electro-oxidation of tryptophan than GO film with tenfold enhancement of peak current. The oxidation mechanism and the kinetic parameters were investigated, and analysis operation conditions were optimized. Under the selected experimental conditions, the oxidation peak currents were proportional to tryptophan concentrations over the range of 0.01 μM to 50.0 μM and 50.0 μM to 800.0 μM, respectively. The detection limit was 2.0 nM (S/N=3). Moreover, the proposed method is free of interference from tyrosine and other coexisting species. The resulting sensor displays excellent repeatability and long-term stability; finally it was successfully applied to detect tryptophan in real samples with good recoveries, ranging from 99.0% to 103.0%.


Food Chemistry | 2014

Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan–graphene composite film modified electrode

Peihong Deng; Zhifeng Xu; Yunfei Kuang

Herein, a novel electrochemical sensor based on an acetylene black paste electrode modified with molecularly imprinted chitosan-graphene composite film for sensitive and selective detection of bisphenol A (BPA) has been developed. Several important parameters controlling the performance of the sensor were investigated and optimised. The imprinted sensor offers a fast response and sensitive BPA quantification. Under the optimal conditions, a linear range from 8.0 nM to 1.0 μM and 1.0 to 20 μM for the detection of BPA was observed with the detection limit of 6.0 nM (S/N=3). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, this imprinted electrochemical sensor was successfully employed to detect BPA in plastic bottled drinking water and canned beverages.


Journal of Pharmaceutical and Biomedical Analysis | 2007

Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interactions

Zhifeng Xu; Daizhi Kuang; Lan Liu; Qinying Deng

Based on hydrophobic and electrostatic interactions, a norfloxacin (NOF) imprinted polymer (P1) was prepared by the combined use of bismethacryloyl-beta-cyclodextrin (BMA-beta-CD) and 2-(diethylamino)ethylmethacrylate (DEAEM) as functional monomers. Compared with the molecularly imprinted polymers (MIPs) using only BMA-beta-CD or DEAEM as a functional monomer, P2 and P3, respectively, P1 showed higher binding affinity and specificity for NOF in aqueous media. Scatchard plot analysis revealed that two classes of binding sites were formed in the imprinted polymer with dissociation constants of 0.32 micromol/ml and 1.19 micromol/ml, respectively. It demonstrated that the combination of hydrophobic effect and electrostatic interaction in molecular imprinting was essential for the improvement of the selective ability of the imprinted polymer. Factors that influenced rebinding of the imprinted polymer including pH, water content in the adsorbed solution were explored.


Food Chemistry | 2015

Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

Peihong Deng; Zhifeng Xu; Rongying Zeng; Chunxia Ding

The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples.


Materials Science and Engineering: C | 2014

Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine

Peihong Deng; Zhifeng Xu; Yonglan Feng

A reliable sensor was fabricated by modifying an acetylene black paste electrode with graphene (denoted as GR/ABPE) for sensitive and selective determination of tryptophan (Trp). Due to the high sorption ability, large surface area and numerous active sites, the GR/ABPE showed a strong enhancement effect on the oxidation of Trp, and greatly increased the peak current. The parameters affecting the Trp determination were investigated. In 1.0 M H2SO4 the voltammetric responses of Trp and tyrosine (Tyr) were well separated into two distinct peaks with peak potential difference (ΔE(pa)) of 115 mV. Under the optimized conditions, in the presence of 0.1 mM Tyr, the oxidation peak current of Trp was proportional to its concentration in the range between 0.1 μM and 0.1 mM, with the limit of detection of 60 nM (S/N=3). The GR/ABPE was applied to the direct detection of Trp in pharmaceutical and biological samples with satisfactory results. This work provides a simple and easy approach to selective detection of Trp in the presence of Tyr.


Biosensors and Bioelectronics | 2017

Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination

Junhua Li; Zhifeng Xu; Mengqin Liu; Peihong Deng; Siping Tang; Jianbo Jiang; Haibo Feng; Dong Qian; Lingzhi He

In this work, the metallic silver and non-metallic nitrogen co-doped reduced graphene oxide (Ag-N-RGO) was first synthesized by a simple and cost-effective strategy, and then a molecularly imprinted polymer (MIP) was formed in situ at the surface of the prepared composite via electropolymerization of o-phenylenediamine in the presence of salbutamol as the template molecule. The electrochemical characterizations demonstrate that the bifunctional graphene-based composite shows improved catalytic performance than that of pristine graphene doped with one-component or none. The MIP sensor based on Ag-N-RGO owns high porous surface structure, resulting in the increased current response and enhanced recognition capacity than that of non-imprinted sensor. The outstanding performance of the developed sensor derives from the combined advantages of Ag-N-RGO with effective catalytic property and MIP with excellent selectivity. Under the optimal conditions, the electrochemical response of the developed sensor is linearly proportional to the concentration of salbutamol in the range of 0.03-20.00µmolL-1 with a low detection limit of 7 nmol L-1. The designed sensor has exhibited the multiple advantages such as low cost, simple manufacture, convenient use, excellent selectivity and good reproducibility. Finally, the proposed method has been extended for the determinations of salbutamol in human urine and pork samples, and the satisfactory recoveries between 98.9-105.3% are achieved.


Journal of Pharmaceutical and Biomedical Analysis | 2013

Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method based on multi-walled carbon nanotubes-chitosan composite film modified electrode.

Peihong Deng; Zhifeng Xu; Junhua Li

In this paper, the simultaneous voltammetric determination of ascorbic acid (AA) and rutin (Ru) has been achieved at an acetylene black paste electrode modified with multi-walled carbon nanotubes-chitosan composite film (denoted as MWCNTs-CHIT/ABPE). Compared with bare electrode, the peak currents of AA and Ru at MWCNTs-CHIT/ABPE increased greatly and the anodic peak potential difference (ΔE(pa)) between AA and Ru are up to 342mV, which is undoubtedly attributed to the unique characteristics of AB and MWCNTs such as excellent electric conductivity, high surface area and strong adsorptive abilities, resulting in higher accumulation efficiency to AA and Ru. The influences of some experimental conditions on the oxidation of AA and Ru were tested and the calibration plot was examined. Under the optimized condition, a good linearity was obtained in the concentration range of 1μM-0.4mM for AA in the presence of 10μM Ru and 20nM-10μM for Ru in the presence of 1mM AA. The detection limits (S/N=3) of AA and Ru are 0.8μM and 10nM, respectively. The proposed method was successfully applied to the simultaneous determination of AA and Ru in pharmaceutical samples with reliable recovery.


RSC Advances | 2016

Facile synthesis of 3D porous nitrogen-doped graphene as an efficient electrocatalyst for adenine sensing

Junhua Li; Jianbo Jiang; Haibo Feng; Zhifeng Xu; Siping Tang; Peihong Deng; Dong Qian

In this work, a simple, low-cost and eco-friendly strategy for fabricating the three-dimensional porous nitrogen-doped graphene (3D-N-GN) is demonstrated by combining the hydrothermal assembly and freeze-drying process without using any framework support. The desired features for 3D-N-GN, such as rich macroporosity, nitrogen-doping structure and high active surface area have been confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical techniques, respectively. In comparison with two-dimensional graphene (2D-GN) and nitrogen-doped graphene (2D-N-GN), 3D-N-GN makes a more negative shift in the oxidation peak potential of adenine together with a remarkable increase in the oxidation peak current, highlighting the importance of the nitrogen-doping and 3D construction of the graphene-based support for improving the electrocatalytic performance. It also indicates that 3D-N-GN can be used as an efficient electrocatalyst for adenine sensing. Furthermore, the sensing conditions are optimized and the resulting sensor displays excellent analytical performance in the detection of adenine at low concentrations ranging from 0.02 to 1.20 μM, with a detection limit of 8 nM. Finally, this proposed method not only exhibits preferable reproducibility, stability and adequate sensitivity, but also demonstrates good efficiency in the detection of adenine in biological fluids.


Journal of Materials Chemistry B | 2014

Preparation of 2D molecularly imprinted materials based on mesoporous silicas via click reaction

Zhifeng Xu; Peihong Deng; Siping Tang; Daizhi Kuang; Fuxing Zhang; Junhua Li

The two-dimensional (2D) molecular imprinting approach has attracted extensive research interest in recent years due to its potential advantages such as simple construction, fast template removal and rapid mass transfer. In this study, a new 2D imprinting approach based on the combination of mesoporous silica materials and molecular imprinting technology is reported. 2D molecularly imprinted materials (MIMs) for cholesterol were prepared by using cholesterol as the template, azide modified β-cyclodextrin (azide-β-CD) as the functional monomer and alkynyl-modified SBA-15 (alkyne-SBA-15) as the skeleton. In this method, azide-β-CD molecules were first assembled around the templates by formation of template-monomer complexes, and thus the mutual positions of azide-β-CD molecules were fixed. Then, azide-β-CD molecules were anchored to the walls of the nano-pores of SBA-15 via click chemistry. After removal of the template molecules, the resulting cavities, i.e., recognition sites were formed in the nano-pores of mesoporous silicas. The synthesized MIM was characterized by FT-IR, X-ray diffraction (XRD), elemental analysis (EA), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and so on. Binding kinetic experiments demonstrated that the 2D imprinting approach can improve site accessibility for the template effectively. The 2D MIM exhibited binding affinity and specificity for the template, as revealed by equilibrium binding experiments. When using MIM as a stationary phase for HPLC, baseline separation of cholesterol from other compounds can be achieved. In addition, the use of 2D imprinting significantly reduced the peak broadening and tailing.


Materials Science and Engineering: C | 2016

Fluorescent molecularly imprinted polymers based on 1,8-naphthalimide derivatives for efficiently recognition of cholic acid

Zhifeng Xu; Peihong Deng; Siping Tang; Junhua Li

Fluorescent molecularly imprinted polymers (MIPs) have attracted increasing attentions in recent years due to their high selectivity and sensitivity for target molecules. In this study, two cholic acid imprinted fluorescent polymers, i.e., MIP1 and MIP2, were prepared using 4-dimethylamino-N-allylnaphthalimide (F1) and 4-piperazinyl-N-allylnaphthalimide (F2) as the fluorescent functional monomers, respectively. The fluorescence intensity of MIP1 decreased linearly with the increase of the template concentration in the range of 1.50-120.0 μM, while the fluorescence intensity of MIP2 increased linearly with the increase of the template concentration in the range of 0.40-110.0 μM. The detection limits of MIP1 and MIP2 for cholic acid were 0.42 and 0.083 μM, respectively. The mechanisms of the fluorescence responsive of the imprinted polymers were discussed. The results of fluorescence measurement and binding experiments demonstrated that both imprinted polymers have high recognition abilities and binding affinities for the template. The imprinted polymers have been successfully applied to the determination of cholic acid in human serums. The present study indicated that 1,8-naphthalimide can be used as a modular building block for design and construction of various fluorogenic molecularly imprinted materials for practical sensing and separation.

Collaboration


Dive into the Zhifeng Xu's collaboration.

Top Co-Authors

Avatar

Junhua Li

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Peihong Deng

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Siping Tang

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Dong Qian

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jianbo Jiang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Mengqin Liu

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Daizhi Kuang

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Fuxing Zhang

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Yonglan Feng

Hengyang Normal University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge