Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhifu Han is active.

Publication


Featured researches published by Zhifu Han.


Science | 2013

Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.

Yadong Sun; Lei Li; Alberto P. Macho; Zhifu Han; Zehan Hu; Cyril Zipfel; Jian-Min Zhou; Jijie Chai

First Defense In defense against bacterial infection, plants carry a cell-surface receptor, known as FLS2, that can bind to a fragment of bacterial flagellin and trigger defense responses. Y. Sun et al. (p. 624, published online 10 October) investigated the structural details that govern the binding between FLS2, its co-receptor BAK1, and the flagellin fragment flg22. The assembled complex initiates signals to activate the plants innate immune response. The molecular basis for how a plant heterodimeric receptor responds to bacterial infection signals is elucidated. Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1–associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.


Science | 2012

Chitin-Induced Dimerization Activates a Plant Immune Receptor

Tingting Liu; Zixu Liu; Chuanjun Song; Yunfei Hu; Zhifu Han; Ji She; Fangfang Fan; Jiawei Wang; Changwen Jin; Junbiao Chang; Jian-Min Zhou; Jijie Chai

Dissecting Chitin Binding The chitin in fungal cells walls serves as a trigger to initiate plant defenses against pathogenic fungi. Arabidopsis detects these signals through a cell surface chitin receptor whose intracellular kinase domain initiates a signaling cascade in response to chitin that activates the plants response to infection. Liu et al. (p. 1160) have now solved the crystal structure of the Arabidopsis chitin receptor AtCERK1. The results show how chitin binds to the receptor and suggest that the biological response requires dimerisation of the receptor when it binds a chitin oligomer at least seven or eight subunits long. Structural analysis shows how fungus-derived chitin dimerizes its receptor on target plants and triggers defense responses. Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)–containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.


Nature | 2011

Structural insight into brassinosteroid perception by BRI1.

Ji She; Zhifu Han; Tae-Wuk Kim; Jinjing Wang; Wei Cheng; Junbiao Chang; Shuai Shi; Jiawei Wang; Maojun Yang; Zhi-Yong Wang; Jijie Chai

Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.


Nature | 2010

Crystal structure of the FTO protein reveals basis for its substrate specificity

Zhifu Han; Tianhui Niu; Junbiao Chang; Xiaoguang Lei; Mingyan Zhao; Qiang Wang; Wei Cheng; Jinjing Wang; Yi Feng; Jijie Chai

Recent studies have unequivocally associated the fat mass and obesity-associated (FTO) gene with the risk of obesity. In vitro FTO protein is an AlkB-like DNA/RNA demethylase with a strong preference for 3-methylthymidine (3-meT) in single-stranded DNA or 3-methyluracil (3-meU) in single-stranded RNA. Here we report the crystal structure of FTO in complex with the mononucleotide 3-meT. FTO comprises an amino-terminal AlkB-like domain and a carboxy-terminal domain with a novel fold. Biochemical assays show that these two domains interact with each other, which is required for FTO catalytic activity. In contrast with the structures of other AlkB members, FTO possesses an extra loop covering one side of the conserved jelly-roll motif. Structural comparison shows that this loop selectively competes with the unmethylated strand of the DNA duplex for binding to FTO, suggesting that it has an important role in FTO selection against double-stranded nucleic acids. The ability of FTO to distinguish 3-meT or 3-meU from other nucleotides is conferred by its hydrogen-bonding interaction with the two carbonyl oxygen atoms in 3-meT or 3-meU. Taken together, these results provide a structural basis for understanding FTO substrate-specificity, and serve as a foundation for the rational design of FTO inhibitors.


Science | 2012

Dense Chromatin Activates Polycomb Repressive Complex 2 to Regulate H3 Lysine 27 Methylation

Wen Yuan; Tong Wu; Hang Fu; Chao Dai; Hui Wu; Nan Liu; Xiang Li; Mo Xu; Zhuqiang Zhang; Tianhui Niu; Zhifu Han; Jijie Chai; Xianghong Jasmine Zhou; Shaorong Gao; Bing Zhu

Maintaining Repression The Polycomb Repressive Complex 2 (PRC2) plays a critical role in gene silencing in metazoans, methylating histone H3 on lysine 27 (H3K27) to generate a repressive chromatin mark. The catalytic subunit E(z)/Ezh2 requires the presence of two other subunits—ESC/EED and Su(z)12—for enzyme activity. Yuan et al. (p. 971; see the Perspective by Pirrotta) show that both a fragment of the histone H3 N-terminal tail, and histone H1 stimulated PRC2 enzyme activity on poor, low-density chromatin substrates, indicating that that PRC2 is regulated by the density and compaction states of chromatin. The histone H3 fragment binds to the Su(z)12 subunit of PRC2 to stimulate E(z)/Ezh2. Local chromatin compaction preceded establishment of histone H3K27 methylation indicating how PRC2 might maintain the repressed state. The density and compaction state of chromatin directly regulates the activity of a transcription repressor protein complex. Polycomb repressive complex 2 (PRC2)–mediated histone H3 lysine 27 (H3K27) methylation is vital for Polycomb gene silencing, a classic epigenetic phenomenon that maintains transcriptional silencing throughout cell divisions. We report that PRC2 activity is regulated by the density of its substrate nucleosome arrays. Neighboring nucleosomes activate the PRC2 complex with a fragment of their H3 histones (Ala31 to Arg42). We also identified mutations on PRC2 subunit Su(z)12, which impair its binding and response to the activating peptide and its ability in establishing H3K27 trimethylation levels in vivo. In mouse embryonic stem cells, local chromatin compaction occurs before the formation of trimethylated H3K27 upon transcription cessation of the retinoic acid–regulated gene CYP26a1. We propose that PRC2 can sense the chromatin environment to exert its role in the maintenance of transcriptional states.


Nature | 2015

Allosteric receptor activation by the plant peptide hormone phytosulfokine

Jizong Wang; Hongjun Li; Zhifu Han; Heqiao Zhang; Tong Wang; Guangzhong Lin; Junbiao Chang; Wei-Cai Yang; Jijie Chai

Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR–SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.


Cell Research | 2015

Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1

Jiao Tang; Zhifu Han; Yadong Sun; Heqiao Zhang; Xinqi Gong; Jijie Chai

The endogenous peptides AtPep1-8 in Arabidopsis mature from the conserved C-terminal portions of their precursor proteins PROPEP1-8, respectively. The two homologous leucine-rich repeat-receptor kinases (LRR-RKs) PEPR1 and PEPR2 act as receptors of AtPeps. AtPep binding leads to stable association of PEPR1,2 with the shared receptor LRR-RK BAK1, eliciting immune responses similar to those induced by pathogens. Here we report a crystal structure of the extracellular LRR domain of PEPR1 (PEPR1LRR) in complex with AtPep1. The structure reveals that AtPep1 adopts a fully extended conformation and binds to the inner surface of the superhelical PEPR1LRR. Biochemical assays showed that AtPep1 is capable of inducing PEPR1LRR-BAK1LRR heterodimerization. The conserved C-terminal portion of AtPep1 dominates AtPep1 binding to PEPR1LRR, with the last amino acid of AtPep1 Asn23 forming extensive interactions with PEPR1LRR. Deletion of the last residue of AtPep1 significantly compromised AtPep1 interaction with PEPR1LRR. Together, our data reveal a conserved structural mechanism of AtPep1 recognition by PEPR1, providing significant insight into prediction of recognition of other peptides by their cognate LRR-RKs.


Current Opinion in Plant Biology | 2014

Structural insight into the activation of plant receptor kinases.

Zhifu Han; Yadong Sun; Jijie Chai

Plant genomes encode a large family of membrane-localized receptor kinases (RKs) that play important roles in diverse biological processes by responding to a wide spectrum of external signals. RK proteins have a conserved tripartite structural organization with a divergent ectodomain (ECD), a transmembrane segment and a conserved intracellular kinase domain. Signal perception by RK-ECDs induces activation of intracellular kinase domains and consequently initiates downstream signaling. An atomic understanding of the mechanisms underlying ligand recognition by RKs and their subsequent activation would aid in engineering crop plants for agricultural practice. Recent structural studies not only reveal the basis for ligand recognition of a few RKs, but also suggest dimerization as a common way of their activation. We propose that dimerization, giving rise to apposition of two intracellular kinase domains, is a general activation mechanism of RKs.


Cell Research | 2016

Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs.

Heqiao Zhang; Xiaoya Lin; Zhifu Han; Li-Jia Qu; Jijie Chai

Plants can achieve amazing lifespans because of their continuous and repetitive formation of new organs by stem cells present within meristems. The balance between proliferation and differentiation of meristem cells is largely regulated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide hormones. One of the well-characterized CLE peptides, CLE41/TDIF (tracheary elements differentiation inhibitory factor), functions to suppress tracheary element differentiation and promote procambial cell proliferation, playing important roles in vascular development and wood formation. The recognition mechanisms of TDIF or other CLE peptides by their respective receptors, however, remain largely elusive. Here we report the crystal structure of TDIF in complex with its receptor PXY, a leucine-rich repeat receptor kinase (LRR-RK). Our structure reveals that TDIF mainly adopts an “Ω”-like conformation binding to the inner surface of the LRR domain of PXY. Interaction between TDIF and PXY is predominately mediated by the relatively conserved amino acids of TDIF. Structure-based sequence alignment showed that the TDIF-interacting motifs are also conserved among other known CLE receptors. Our data provide a structural template for understanding the recognition mechanism of CLE peptides by their receptors, offering an opportunity for the identification of receptors of other uncharacterized CLE peptides.


Cell Research | 2016

Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth.

Wen Song; Li Liu; Jizong Wang; Zhen Wu; Heqiao Zhang; Jiao Tang; Guangzhong Lin; Yichuan Wang; Xing Wen; Wenyang Li; Zhifu Han; Hongwei Guo; Jijie Chai

Peptide-mediated cell-to-cell signaling has crucial roles in coordination and definition of cellular functions in plants. Peptide-receptor matching is important for understanding the mechanisms underlying peptide-mediated signaling. Here we report the structure-guided identification of root meristem growth factor (RGF) receptors important for plant development. An assay based on a signature ligand recognition motif (Arg-x-Arg) conserved in a subfamily of leucine-rich repeat receptor kinases (LRR-RKs) identified the functionally uncharacterized LRR-RK At4g26540 as a receptor of RGF1 (RGFR1). We further solved the crystal structure of RGF1 in complex with the LRR domain of RGFR1 at a resolution of 2.6 Å, which reveals that the Arg-x-Gly-Gly (RxGG) motif is responsible for specific recognition of the sulfate group of RGF1 by RGFR1. Based on the RxGG motif, we identified additional four RGFRs. Participation of the five RGFRs in RGF-induced signaling is supported by biochemical and genetic data. We also offer evidence showing that SERKs function as co-receptors for RGFs. Taken together, our study identifies RGF receptors and co-receptors that can link RGF signals with their downstream components and provides a proof of principle for structure-based matching of LRR-RKs with their peptide ligands.

Collaboration


Dive into the Zhifu Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhou

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge