Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhigang Chen is active.

Publication


Featured researches published by Zhigang Chen.


ACS Nano | 2009

Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High- Performance Flexible Electrode

Da-Wei Wang; Feng Li; Jinping Zhao; Wencai Ren; Zhigang Chen; Jun Tan; Zhong-Shuai Wu; Ian R. Gentle; Gao Qing Lu; Hui-Ming Cheng

Freestanding and flexible graphene/polyaniline composite paper was prepared by an in situ anodic electropolymerization of polyaniline film on graphene paper. This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength of 12.6 MPa and a stable large electrochemical capacitance (233 F g(-1) and 135 F cm(-3) for gravimetric and volumetric capacitances), which outperforms many other currently available carbon-based flexible electrodes and is hence particularly promising for flexible supercapacitors.


Journal of the American Chemical Society | 2010

Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4

Gang Liu; Ping Niu; Chenghua Sun; Sean C. Smith; Zhigang Chen; Gao Qing Lu; Hui-Ming Cheng

Electronic structure intrinsically controls the light absorbance, redox potential, charge-carrier mobility, and consequently, photoreactivity of semiconductor photocatalysts. The conventional approach of modifying the electronic structure of a semiconductor photocatalyst for a wider absorption range by anion doping operates at the cost of reduced redox potentials and/or charge-carrier mobility, so that its photoreactivity is usually limited and some important reactions may not occur at all. Here, we report sulfur-doped graphitic C(3)N(4) (C(3)N(4-x)S(x)) with a unique electronic structure that displays an increased valence bandwidth in combination with an elevated conduction band minimum and a slightly reduced absorbance. The C(3)N(4-x)S(x) shows a photoreactivity of H(2) evolution 7.2 and 8.0 times higher than C(3)N(4) under lambda > 300 and 420 nm, respectively. More strikingly, the complete oxidation process of phenol under lambda > 400 nm can occur for sulfur-doped C(3)N(4), which is impossible for C(3)N(4) even under lambda > 300 nm. The homogeneous substitution of sulfur for lattice nitrogen and a concomitant quantum confinement effect are identified as the cause of this unique electronic structure and, consequently, the excellent photoreactivity of C(3)N(4-x)S(x). The results acquired may shed light on general doping strategies for designing potentially efficient photocatalysts.


Journal of the American Chemical Society | 2008

Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels

Zhigang Chen; Huili Chen; He Hu; Mengxiao Yu; Fuyou Li; Qiang Zhang; Zhiguo Zhou; Tao Yi; Chunhui Huang

Up-converting rare-earth nanophosphors (UCNPs) have great potential to revolutionize biological luminescent labels, but their use has been limited by difficulties in obtaining UCNPs that are biocompatible. To address this problem, we have developed a simple and versatile strategy for converting hydrophobic UCNPs into water-soluble and carboxylic acid-functionalized analogues by directly oxidizing oleic acid ligands with the Lemieux-von Rudloff reagent. This oxidation process has no obvious adverse effects on the morphologies, phases, compositions and luminescent capabilities of UCNPs. Furthermore, as revealed by Fourier transform infrared (FTIR) and NMR results, oleic acid ligands on the surface of UCNPs can be oxidized into azelaic acids (HOOC(CH2)7COOH), which results in the generation of free carboxylic acid groups on the surface. The presence of free carboxylic acid groups not only confers high solubility in water, but also allows further conjugation with biomolecules such as streptavidin. A highly sensitive DNA sensor based on such streptavidin-coupled UCNPs have been prepared, and the demonstrated results suggest that these biocompatible UCNPs have great superiority as luminescent labeling materials for biological applications.


ACS Nano | 2011

Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo

Qiwei Tian; Feiran Jiang; Rujia Zou; Qian Liu; Zhigang Chen; Meifang Zhu; Shiping Yang; Jinglong Wang; Jianhua Wang; Junqing Hu

Photothermal ablation (PTA) therapy has a great potential to revolutionize conventional therapeutic approaches for cancers, but it has been limited by difficulties in obtaining biocompatible photothermal agents that have low cost, small size (<100 nm), and high photothermal conversion efficiency. Herein, we have developed hydrophilic plate-like Cu(9)S(5) nanocrystals (NCs, a mean size of ∼70 nm × 13 nm) as a new photothermal agent, which are synthesized by combining a thermal decomposition and ligand exchange route. The aqueous dispersion of as-synthesized Cu(9)S(5) NCs exhibits an enhanced absorption (e.g., ∼1.2 × 10(9) M(-1) cm(-1) at 980 nm) with the increase of wavelength in near-infrared (NIR) region, which should be attributed to localized surface plasmon resonances (SPR) arising from p-type carriers. The exposure of the aqueous dispersion of Cu(9)S(5) NCs (40 ppm) to 980 nm laser with a power density of 0.51 W/cm(2) can elevate its temperature by 15.1 °C in 7 min; a 980 nm laser heat conversion efficiency reaches as high as 25.7%, which is higher than that of the as-synthesized Au nanorods (23.7% from 980 nm laser) and the recently reported Cu(2-x)Se NCs (22% from 808 nm laser). Importantly, under the irradiation of 980 nm laser with the conservative and safe power density over a short period (∼10 min), cancer cells in vivo can be efficiently killed by the photothermal effects of the Cu(9)S(5) NCs. The present finding demonstrates the promising application of the Cu(9)S(5) NCs as an ideal photothermal agent in the PTA of in vivo tumor tissues.


Advanced Materials | 2011

Hydrophilic Flower‐Like CuS Superstructures as an Efficient 980 nm Laser‐Driven Photothermal Agent for Ablation of Cancer Cells

Qiwei Tian; Minghua Tang; Yangang Sun; Rujia Zou; Zhigang Chen; Meifang Zhu; Shiping Yang; Jinglong Wang; Jianhua Wang; Junqing Hu

Photothermal ablation (PTA) therapy has attracted much interest in recent years as a minimally invasive alternative to conventional approaches, such as surgery and chemotherapy, for therapeutic intervention of specifi c biological targets. [ 1 , 2 ] In particular, near-infrared (NIR, λ = 700–1100 nm) laser-induced PTA, which converts NIR optical energy into thermal energy, has attracted increasing attention, because the NIR laser is absorbed less by biological tissues and the typical penetration depth of the NIR (such as 980 nm) light can be several centimeters in biological tissues. [ 3 , 4 ] A prerequisite for the development of the NIR laser-induced PTA is to gain access to biocompatible and effi cient photothermal coupling agents. As the well-known NIR photothermal conversion agents, gold (Au) nanostructures, including supramolecularly assembled nanoparticles, [ 5–8 ]


Chemical Communications | 2009

Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures

Xuewen Wang; Gang Liu; Zhigang Chen; Feng Li; Lianzhou Wang; Gao Qing Lu; Hui-Ming Cheng

Coupled ZnO/CdS heterostructures based on the Z-scheme mechanism are demonstrated to be highly active photocatalysts for H(2) evolution under simulated solar light irradiation due to the greatly prolonged lifetime of photoexcited carriers.


Journal of the American Chemical Society | 2013

Sub-10 nm Fe3O4@Cu2–xS Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy

Qiwei Tian; Junqing Hu; Yihan Zhu; Rujia Zou; Zhigang Chen; Shiping Yang; Run-Wei Li; Qianqian Su; Yu Han; Xiaogang Liu

Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications.


Journal of Materials Chemistry | 2007

Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts

Lisha Zhang; Wenzhong Wang; Zhigang Chen; Lin Zhou; Haolan Xu; Wei Zhu

A novel flower-like Bi2WO6 superstructure was successfully realized by a facile hydrothermal process without any surfactant or template. Based on the evolution of this morphology as a function of hydrothermal time, the formation mechanism was proposed to be as follows: (1) self-aggregation of nanoparticles; (2) formation of crystalline nanoplates by Ostwald ripening; and (3) organization of the in situ-formed nanoplates into spherical superstructures. The pretty flower-like superstructure of Bi2WO6 was retained after calcination at 550 °C for 4 h. Both the uncalcined and calcined Bi2WO6 exhibited excellent visible-light-driven photocatalytic efficiencies for the degradation of Rhodamine B (RhB), up to 84 and 97% within 60 minutes, respectively, which were much higher than those of TiO2 (P-25) and Bi2WO6 sample prepared by solid-state reaction (SSR-Bi2WO6). Close investigation indicated that plenty of pores with different sizes existed in the Bi2WO6 superstructures, which could serve as hierarchical transport paths for small molecules and might greatly improve their photocatalytic activities.


Analytical Chemistry | 2009

High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors

Liqin Xiong; Zhigang Chen; Qiwei Tian; Tianye Cao; Congjian Xu; Fuyou Li

Fluorescence targeted imaging in vivo has proven useful in tumor recognition and drug delivery. In the process of in vivo imaging, however, a high autofluorescence background could mask the signals from the fluorescent probes. Herein, a high contrast upconversion luminescence (UCL) imaging protocol was developed for targeted imaging of tumors based on RGD-labeled upconversion nanophosphors (UCNPs) as luminescent labels. Confocal Z-scan imaging of tissue slices revealed that UCL imaging showed no autofluorescence signal even at high penetration depth (approximately 600 microm). More importantly, region of interest (ROI) analysis of the UCL signal in vivo showed that UCL imaging achieved a high signal-to-noise ratio (approximately 24) between the tumor and the background. These results demonstrate that the UCL imaging technique appears particularly suited for applications in tracking and labeling components of complex biological systems.


Analytical Chemistry | 2009

Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors.

Mengxiao Yu; Fuyou Li; Zhigang Chen; He Hu; Cheng Zhan; Hong Yang; Chunhui Huang

Because of the ability to selectively reveal the objects of interest with subcellular resolution, fluorescence microscopy provides widespread applications from basic biological research to clinical diagnosis. However, challenges still remain in reducing the degree of photobleaching and increasing the contrast between signal and noise. Herein, we found that rare-earth nanophosphors exhibit a unique up-conversion luminescence mechanism and imaging modality and developed a new three-dimensional visualization method of laser scanning up-conversion luminescence microscopy (LSUCLM) with little photobleaching and no background fluorescence, by introducing a reverse excitation dichroic mirror and the confocal pinhole technique. Moreover, we demonstrated the up-conversion emission imaging of thin films containing embedded rare-earth nanophosphors and cells multilabeled with the nanophosphors and organic dyes. These data show that LSUCLM not only shares noninvasive benefits and deep penetration of two-photon microscopy but also offers some distinct advantages, such as little photobleaching of both organic dyes and rare-earth nanophosphors, no background fluorescence from either endogenous fluorophores or colabeled fluorescent probes, and excellent compatibility with conventional confocal microscopy.

Collaboration


Dive into the Zhigang Chen's collaboration.

Top Co-Authors

Avatar

Jin Zou

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gao Qing Lu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Hui-Ming Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Yang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge