Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhigang Xue is active.

Publication


Featured researches published by Zhigang Xue.


Nature | 2013

Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing

Zhigang Xue; Kevin Huang; Chaochao Cai; Lingbo Cai; Chunyan Jiang; Yun Feng; Zhenshan Liu; Qiao Zeng; Liming Cheng; Yi E. Sun; Jiayin Liu; Steve Horvath; Guoping Fan

Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.


Human Molecular Genetics | 2009

DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation

Leah Hutnick; Peyman Golshani; Masakasu Namihira; Zhigang Xue; Anna Matynia; X. William Yang; Alcino J. Silva; Felix E. Schweizer; Guoping Fan

DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal forebrain from E13.5 on. The mutant mice were viable with a normal lifespan, but displayed severe neuronal cell death between E14.5 and three weeks postnatally. Accompanied with the striking cortical and hippocampal degeneration, adult mutant mice exhibited neurobehavioral defects in learning and memory in adulthood. Unexpectedly, a fraction of Dnmt1(-/-) cortical neurons survived throughout postnatal development, so that the residual cortex in mutant mice contained 20-30% of hypomethylated neurons across the lifespan. Hypomethylated excitatory neurons exhibited multiple defects in postnatal maturation including abnormal dendritic arborization and impaired neuronal excitability. The mutant phenotypes are coupled with deregulation of those genes involved in neuronal layer-specification, cell death and the function of ion channels. Our results suggest that DNA methylation, through its role in modulating neuronal gene expression, plays multiple roles in regulating cell survival and neuronal maturation in the CNS.


Genome Biology | 2016

Simultaneous profiling of transcriptome and DNA methylome from a single cell

Youjin Hu; Kevin Huang; Qin An; Guizhen Du; Ganlu Hu; Jinfeng Xue; Xianmin Zhu; Cun-Yu Wang; Zhigang Xue; Guoping Fan

BackgroundSingle-cell transcriptome and single-cell methylome technologies have become powerful tools to study RNA and DNA methylation profiles of single cells at a genome-wide scale. A major challenge has been to understand the direct correlation of DNA methylation and gene expression within single-cells. Due to large cell-to-cell variability and the lack of direct measurements of transcriptome and methylome of the same cell, the association is still unclear.ResultsHere, we describe a novel method (scMT-seq) that simultaneously profiles both DNA methylome and transcriptome from the same cell. In sensory neurons, we consistently identify transcriptome and methylome heterogeneity among single cells but the majority of the expression variance is not explained by proximal promoter methylation, with the exception of genes that do not contain CpG islands. By contrast, gene body methylation is positively associated with gene expression for only those genes that contain a CpG island promoter. Furthermore, using single nucleotide polymorphism patterns from our hybrid mouse model, we also find positive correlation of allelic gene body methylation with allelic expression.ConclusionsOur method can be used to detect transcriptome, methylome, and single nucleotide polymorphism information within single cells to dissect the mechanisms of epigenetic gene regulation.


Human Molecular Genetics | 2013

Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells

Y. Z. Chen; Kevin Huang; Martin N. Nakatsu; Zhigang Xue; Sophie X. Deng; Guoping Fan

The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy.


Journal of Neuroscience Research | 2012

Dnmt3a Regulates Both Proliferation and Differentiation of Mouse Neural Stem Cells

Zhourui Wu; Kevin Huang; Juehua Yu; Thuc Le; Masakasu Namihira; Yupeng Liu; Jun Zhang; Zhigang Xue; Liming Cheng; Guoping Fan

DNA methylation is known to regulate cell differentiation and neuronal function in vivo. Here we examined whether deficiency of a de novo DNA methyltransferase, Dnmt3a, affects in vitro differentiation of mouse embryonic stem cells (mESCs) to neuronal and glial cell lineages. Early‐passage neural stem cells (NSCs) derived from Dnmt3a‐deficient ESCs exhibited a moderate phenotype in precocious glial differentiation compared with wild‐type counterparts. However, successive passaging to passage 6 (P6), when wild‐type NSCs become gliogenic, revealed a robust phenotype of precocious astrocyte and oligodendrocyte differentiation in Dnmt3a−/− NSCs, consistent with our previous findings in the more severely hypomethylated Dnmt1−/− NSCs. Mass spectrometric analysis revealed that total levels of methylcytosine in Dnmt3a−/− NSCs at P6 were globally hypomethylated. Moreover, the Dnmt3a−/− NSC proliferation rate was significantly increased compared with control from P6 onward. Thus, our work revealed a novel role for Dnmt3a in regulating both the timing of neural cell differentiation and the cell proliferation in the paradigm of mESC‐derived‐NSCs.


Stem cell reports | 2014

A Panel of CpG Methylation Sites Distinguishes Human Embryonic Stem Cells and Induced Pluripotent Stem Cells

Kevin Huang; Yin Shen; Zhigang Xue; Marina Bibikova; Craig April; Zhenshan Liu; Linzhao Cheng; Andras Nagy; Matteo Pellegrini; Jian Bing Fan; Guoping Fan

Summary Whether human induced pluripotent stem cells (hiPSCs) are epigenetically identical to human embryonic stem cells (hESCs) has been debated in the stem cell field. In this study, we analyzed DNA methylation patterns in a large number of hiPSCs (n = 114) and hESCs (n = 155), and identified a panel of 82 CpG methylation sites that can distinguish hiPSCs from hESCs with high accuracy. We show that 12 out of the 82 CpG sites were subject to hypermethylation in part by DNMT3B. Notably, DNMT3B contributes directly to aberrant hypermethylation and silencing of the signature gene, TCERG1L. Overall, we conclude that DNMT3B is involved in a wave of de novo methylation during reprogramming, a portion of which contributes to the unique hiPSC methylation signature. These 82 CpG methylation sites may be useful as biomarkers to distinguish between hiPSCs and hESCs.


Stem Cells and Development | 2011

Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells.

Anyou Wang; Kevin Huang; Yin Shen; Zhigang Xue; Chaochao Cai; Steve Horvath; Guoping Fan

It has been debated whether human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) express distinctive transcriptomes. By using the method of weighted gene co-expression network analysis, we showed here that iPSCs exhibit altered functional modules compared with ESCs. Notably, iPSCs and ESCs differentially express 17 modules that primarily function in transcription, metabolism, development, and immune response. These module activations (up- and downregulation) are highly conserved in a variety of iPSCs, and genes in each module are coherently co-expressed. Furthermore, the activation levels of these modular genes can be used as quantitative variables to discriminate iPSCs and ESCs with high accuracy (96%). Thus, differential activations of these functional modules are the conserved features distinguishing iPSCs from ESCs. Strikingly, the overall activation level of these modules is inversely correlated with the DNA methylation level, suggesting that DNA methylation may be one mechanism regulating the module differences. Overall, we conclude that human iPSCs and ESCs exhibit distinct gene expression networks, which are likely associated with different epigenetic reprogramming events during the derivation of iPSCs and ESCs.


Scientific Reports | 2016

Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons.

Ganlu Hu; Kevin Huang; Youjin Hu; Guizhen Du; Zhigang Xue; Xianmin Zhu; Guoping Fan

Peripheral nerve injury leads to various injury-induced responses in sensory neurons including physiological pain, neuronal cell death, and nerve regeneration. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis of mouse nonpeptidergic nociceptors (NP), peptidergic nociceptors (PEP), and large myelinated sensory neurons (LM) under both control and injury conditions at 3 days after sciatic nerve transection (SNT). After performing principle component and weighted gene co-expression network analysis, we categorized dorsal root ganglion (DRG) neurons into different subtypes and discovered co-regulated injury-response genes including novel regeneration associated genes (RAGs) in association with neuronal development, protein translation and cytoplasm transportation. In addition, we found significant up-regulation of the genes associated with cell death such as Pdcd2 in a subset of NP neurons after axotomy, implicating their actions in neuronal cell death upon nerve injury. Our study revealed the distinctive and sustained heterogeneity of transcriptomic responses to injury at single neuron level, implicating the involvement of different gene regulatory networks in nerve regeneration, neuronal cell death and neuropathy in different population of DRG neurons.


PLOS ONE | 2012

Identification of miRNA Signatures during the Differentiation of hESCs into Retinal Pigment Epithelial Cells

Ganlu Hu; Kevin Huang; Juehua Yu; Sailesh Gopalakrishna-Pillai; Jun Kong; He Xu; Zhenshan Liu; Kunshan Zhang; Jun Xu; Yuping Luo; Siguang Li; Yi E. Sun; Linda E. Iverson; Zhigang Xue; Guoping Fan

Retinal pigment epithelium (RPE) cells can be obtained through in vitro differentiation of both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We have previously identified 87 signature genes relevant to RPE cell differentiation and function through transcriptome analysis of both human ESC- and iPSC-derived RPE as well as normal fetal RPE. Here, we profile miRNA expression through small RNA-seq in human ESCs and their RPE derivatives. Much like conclusions drawn from our previous transcriptome analysis, we find that the overall miRNA landscape in RPE is distinct from ESCs and other differentiated somatic tissues. We also profile miRNA expression during intermediate stages of RPE differentiation and identified unique subsets of miRNAs that are gradually up- or down-regulated, suggesting that dynamic regulation of these miRNAs is associated with the RPE differentiation process. Indeed, the down-regulation of a subset of miRNAs during RPE differentiation is associated with up-regulation of RPE-specific genes, such as RPE65, which is exclusively expressed in RPE. We conclude that miRNA signatures can be used to classify different degrees of in vitro differentiation of RPE from human pluripotent stem cells. We suggest that RPE-specific miRNAs likely contribute to the functional maturation of RPE in vitro, similar to the regulation of RPE-specific mRNA expression.


Science China-life Sciences | 2016

Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation

Ping Lu; Xiaolong Chen; Yun Feng; Qiao Zeng; Cizhong Jiang; Xianmin Zhu; Guoping Fan; Zhigang Xue

Fragile X syndrome (FXS) patients carry the expansion of over 200 CGG repeats at the promoter of fragile X mental retardation 1 (FMR1), leading to decreased or absent expression of its encoded fragile X mental retardation protein (FMRP). However, the global transcriptional alteration by FMRP deficiency has not been well characterized at single nucleotide resolution, i.e., RNA-seq. Here, we performed in-vitro neuronal differentiation of human induced pluripotent stem (iPS) cells that were derived from fibroblasts of a FXS patient (FXS-iPSC). We then performed RNA-seq and examined the transcriptional misregulation at each intermediate stage during in-vitro differentiation of FXS-iPSC into neurons. After thoroughly analyzing the transcriptomic data and integrating them with those from other platforms, we found up-regulation of many genes encoding TFs for neuronal differentiation (WNT1, BMP4, POU3F4, TFAP2C, and PAX3), down-regulation of potassium channels (KCNA1, KCNC3, KCNG2, KCNIP4, KCNJ3, KCNK9, and KCNT1) and altered temporal regulation of SHANK1 and NNAT in FXS-iPSC derived neurons, indicating impaired neuronal differentiation and function in FXS patients. In conclusion, we demonstrated that the FMRP deficiency in FXS patients has significant impact on the gene expression patterns during development, which will help to discover potential targeting candidates for the cure of FXS symptoms.

Collaboration


Dive into the Zhigang Xue's collaboration.

Top Co-Authors

Avatar

Guoping Fan

University of California

View shared research outputs
Top Co-Authors

Avatar

Kevin Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge