Zhiguo Zhou
Luna Innovations
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiguo Zhou.
Nanomedicine: Nanotechnology, Biology and Medicine | 2013
Anthony Dellinger; Zhiguo Zhou; James R. Connor; Achuthamangalam B. Madhankumar; Sarala Pamujula; Christie M. Sayes; Christopher L. Kepley
Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.
Toxicology in Vitro | 2011
Marion Ehrich; Roger Van Tassell; Yunbo Li; Zhiguo Zhou; Christopher L. Kepley
Although organophosphate (OP)-induced acetylcholinesterase (AChE) inhibition is the critical mechanism causing toxicities that follow exposure, other biochemical events, including oxidative stress, have been reported to contribute to OP toxicity. Fullerenes are carbon spheres with antioxidant activity. Thus, we hypothesized that fullerenes could counteract the effects of OP compounds and tested this hypothesis using two in vitro test systems, hen brain and human neuroblastoma SH-SY5Y cells. Cells were incubated with eight different derivatized fullerene compounds before challenge with paraoxon (0=control, 5×10(-8), 10(-7), 2×10(-7) or 5×10(-7) M) or diisopropylphosphorofluoridate (DFP, 0=control, 5×10(-6), 10(-5), 2×10(-5), and 5×10(-5) M) and measurement of AChE activities. Activities of brain and SH-SY5Y AChE with OP compounds alone ranged from 55-83% lower than non-treated controls after paraoxon and from 60-92% lower than non-treated controls after DFP. Most incubations containing 1 and 10 μM fullerene derivatives brought AChE activity closer to untreated controls, with improvements in AChE activity often >20%. Using dissipation of superoxide anion radicals as an indicator (xanthine oxidation as a positive control), all fullerene derivatives demonstrated significant antioxidant capability in neuroblastoma cells at 1 μM concentrations. No fullerene derivative at 1 μM significantly affected neuroblastoma cell viability, when determined using either Alamar Blue dye retention or a luminescent assay for ATP production. These studies suggest that derivatized fullerene nanomaterials have potential capability to ameliorate OP-induced AChE inhibition resulting in toxicities.
Experimental Dermatology | 2009
Anthony Dellinger; Zhiguo Zhou; Robert P. Lenk; Darren MacFarland; Christopher L. Kepley
Abstract:u2002 Inflammation is a natural biological response that occurs when vascular tissues are subjected to harmful stimuli. This process may be beneficial to the host during wound healing and infections but can be detrimental if left unchecked. Oxidative stress, the generation of reactive oxygen species, is thought to be one component of this response. Fullerenes can counteract reactive oxygen species due to their potent antioxidant capabilities. Thus, we hypothesized that these molecules may inhibit inflammation. To test this hypothesis we used an in vivo model of phorbol 12‐myristate 13‐acetate (PMA)‐induced inflammation and examined the effects fullerenes have on mitigating this response. We show that PMA‐induced inflammation and oedema is dramatically inhibited when fullerenes are given prior to challenge. Thus, fullerene derivatives may be a novel way to blunt certain inflammatory conditions and facilitate faster recovery of damaged tissue.
Nanomedicine: Nanotechnology, Biology and Medicine | 2010
Anthony Dellinger; Zhiguo Zhou; Sarah K. Norton; Robert P. Lenk; Daniel H. Conrad; Christopher L. Kepley
Fullerenes are carbon cages of variable size that can be derivatized with various side chain moieties resulting in compounds that are being developed into nanomedicines. Although fullerene use in several preclinical in vitro and in vivo models of disease has demonstrated their potential as diagnostic and therapeutic agents, little is known about how they enter cells, what organelles they target, and the time course for their cellular deposition. Fullerenes (C(70)) that have already been shown to be potent inhibitors of mast cell (MC)-mediated allergic inflammation were conjugated with Texas red (TR) and used in conjunction with confocal microscopy to determine mechanisms of uptake, the organelle localization, and the duration they can be detected in situ. We show that C(70)-TR are nonspecifically endocytosed into MCs, where they are shuttled throughout the cytoplasm, lysosomes, mitochondria, and into endoplasmic reticulum at different times. No nuclear or secretory granule localization was observed. The C(70)-TR remained detectable within cells at 1 week. These studies show that MCs endocytose fullerenes, where they are shuttled to organelles involved with calcium and reactive oxygen species production, which may explain their efficacy as cellular inhibitors. From the clinical editor: Fullerenes are carbon cages of variable size that have already been shown to be potent inhibitors of mast cell (MC)-mediated allergic inflammation. These were conjugated with Texas red (TR) and used in conjunction with confocal microscopy to determine mechanisms of uptake, the organelle localization, and duration, demonstrating that MCs endocytose fullerenes, which are shuttled to organelles involved with calcium and reactive oxygen species production. This intracellular trafficking may explain the efficacy of fullerenes as cellular inhibitors.
The Journal of Allergy and Clinical Immunology | 2012
Sarah K. Norton; Dayanjan S. Wijesinghe; Anthony Dellinger; Jamie Sturgill; Zhiguo Zhou; Suzanne E. Barbour; Charles E. Chalfant; Daniel H. Conrad; Christopher L. Kepley
BACKGROUNDnFullerenes are molecules being investigated for a wide range of therapeutic applications. We have shown previously that certain fullerene derivatives (FDs) inhibit mast cell (MC) function inxa0vitro, and here we examine their inxa0vivo therapeutic effect on asthma, a disease in which MCs play a predominant role.nnnOBJECTIVEnWe sought to determine whether an efficient MC-stabilizing FD (C(70)-tetraglycolate [TGA]) can inhibit asthma pathogenesis inxa0vivo and to examine its inxa0vivo mechanism of action.nnnMETHODSnAsthma was induced in mice, and animals were treated intranasally with TGA either simultaneously with treatment or after induction of pathogenesis. The efficacy of TGA was determined through the measurement of airway inflammation, bronchoconstriction, serum IgE levels, and bronchoalveolar lavage fluid cytokine and eicosanoid levels.nnnRESULTSnWe found that TGA-treated mice have significantly reduced airway inflammation, eosinophilia, and bronchoconstriction. The TGA treatments are effective, even when given after disease is established. Moreover, we report a novel inhibitory mechanism because TGA stimulates the production of an anti-inflammatory P-450 eicosanoid metabolites (cis-epoxyeicosatrienoic acids [EETs]) in the lung. Inhibitors of these anti-inflammatory EETs reversed TGA inhibition. In human lung MCs incubated with TGA, there was a significant upregulation of CYP1B gene expression, and TGA also reduced IgE production from B cells. Lastly, MCs incubated with EET and challenged through FcεRI had a significant blunting of mediator release compared with nontreated cells.nnnCONCLUSIONnThe inhibitory capabilities of TGA reported herexa0suggest that FDs might be used a platform for developingxa0treatments for asthma.
Journal of Cardiovascular Magnetic Resonance | 2013
Anthony Dellinger; John Olson; Kerry M. Link; Stephen A. Vance; Marinella G. Sandros; Jijin Yang; Zhiguo Zhou; Christopher L. Kepley
BackgroundThe hallmark of atherosclerosis is the accumulation of plaque in vessel walls. This process is initiated when monocytic cells differentiate into macrophage foam cells under conditions with high levels of atherogenic lipoproteins. Vulnerable plaque can dislodge, enter the blood stream, and result in acute myocardial infarction and stroke. Imaging techniques such as cardiovascular magnetic resonance (CMR) provides one strategy to identify patients with plaque accumulation.MethodsWe synthesized an atherosclerotic-targeting contrast agent (ATCA) in which gadolinium (Gd)-containing endohedrals were functionalized and formulated into liposomes with CD36 ligands intercalated into the lipid bilayer. In vitro assays were used to assess the specificity of the ATCA for foam cells. The ability of ATCA to detect atherosclerotic plaque lesions in vivo was assessed using CMR.ResultsThe ATCA was able to detect scavenger receptor (CD36)-expressing foam cells in vitro and were specifically internalized via the CD36 receptor as determined by focused ion beam/scanning electron microscopy (FIB-SEM) and Western blotting analysis of CD36 receptor-specific signaling pathways. The ATCA exhibited time-dependent accumulation in atherosclerotic plaque lesions of ApoE −/− mice as determined using CMR. No ATCA accumulation was observed in vessels of wild type (C57/b6) controls. Non-targeted control compounds, without the plaque-targeting moieties, were not taken up by foam cells in vitro and did not bind plaque in vivo. Importantly, the ATCA injection was well tolerated, did not demonstrate toxicity in vitro or in vivo, and no accumulation was observed in the major organs.ConclusionsThe ATCA is specifically internalized by CD36 receptors on atherosclerotic plaque providing enhanced visualization of lesions under physiological conditions. These ATCA may provide new tools for physicians to non-invasively detect atherosclerotic disease.
Clinical and Translational Science | 2010
Sarah K. Norton; B S Anthony Dellinger; Zhiguo Zhou; Robert P. Lenk; Darren MacFarland; Becky Vonakis; Daniel H. Conrad; M.B.A. Christopher L. Kepley Ph.D.
Treatments for allergic disease block the effects of mediators released from activated mast cells and blood basophils. A panel of fullerene derivatives was synthesized and tested for their ability to preempt the release of allergic mediators in vitro and in vivo. The fullerene C70‐tetraglycolic acid significantly inhibited degranulation and cytokine production from mast cells and basophils, while C70‐tetrainositol blocked only cytokine production in mast cells and degranulation and cytokine production in basophils. The early phase of FcɛRI inhibition was dependent on the blunted release of intracellular calcium stores, elevations in reactive oxygen species, and several signaling molecules. Gene microarray studies further showed the two fullerene derivatives inhibited late phase responses in very different ways. C70‐tetraglycolic acid was able to block mast cell‐driven anaphylaxis in vivo, while C70‐tetrainositol did not. No toxicity was observed with either compound. These findings demonstrate the biological effects of fullerenes critically depends on the moieties added to the carbon cage and suggest they act on different FcɛRI‐specific molecules in mast cells and basophils. These next generation fullerene derivatives represent a new class of compounds that interfere with FcɛRI signaling pathways to stabilize mast cells and basophils. Thus, fullerene‐based therapies may be a new approach for treating allergic diseases. Clin Trans Sci 2010; Volume 3: 158–169
Nanomedicine: Nanotechnology, Biology and Medicine | 2009
Zhiguo Zhou; Robert P. Lenk; Anthony Dellinger; Darren MacFarland; Krishan Kumar; Stephen R. Wilson; Christopher L. Kepley
Hair loss is a common symptom resulting from a wide range of disease processes and can lead to stress in affected individuals. The purpose of this study was to examine the effect of fullerene nanomaterials on hair growth. We used shaved mice as well as SKH-1 bald mice to determine if fullerene-based compounds could affect hair growth and hair follicle numbers. In shaved mice, fullerenes increase the rate of hair growth as compared with mice receiving vehicle only. In SKH-1 hairless mice fullerene derivatives given topically or subdermally markedly increased hair growth. This was paralleled by a significant increase in the number of hair follicles in fullerene-treated mice as compared with those mice treated with vehicle only. The fullerenes also increased hair growth in human skin sections maintained in culture. These studies have wide-ranging implications for those conditions leading to hair loss, including alopecia, chemotherapy, and reactions to various chemicals.
PLOS ONE | 2015
Anthony Dellinger; Pierre Cunin; David M. Lee; Andrew L. Kung; D. Bradford Brooks; Zhiguo Zhou; Peter Nigrovic; Christopher L. Kepley
Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.
Investigative Radiology | 2013
Adiseshaiah P; Anthony Dellinger; MacFarland D; Stern S; Dobrovolskaia M; Ileva L; Patri Ak; Bernardo M; Brooks Db; Zhiguo Zhou; McNeil S; Christopher L. Kepley
ObjectiveMacromolecular contrast agents for magnetic resonance imaging (MRI) are useful blood-pool agents because of their long systemic half-life and have found applications in monitoring tumor vasculature and angiogenesis. Macromolecular contrast agents have been able to overcome some of the disadvantages of the conventional small-molecule contrast agent Magnevist (gadolinium-diethylenetriaminepentaacetic acid), such as rapid extravasation and quick renal clearance, which limits the viable MRI time. There is an urgent need for new MRI contrast agents that increase the sensitivity of detection with a higher relaxivity, longer blood half-life, and reduced toxicity from free Gd3+ ions. Here, we report on the characterization of a novel water-soluble, derivatized, gadolinium-enclosed metallofullerene nanoparticle (Hydrochalarone-1) in development as an MRI contrast agent. Materials and MethodsThe physicochemical properties of Hydrochalarone-1 were characterized by dynamic light scattering (hydrodynamic diameter), atomic force microscopy (particle height), &zgr; potential analysis (surface charge), and inductively coupled plasma-mass spectrometry (gadolinium concentration). The blood compatibility of Hydrochalarone-1 was also assessed in vitro through analysis of hemolysis, platelet aggregation, and complement activation of human blood. In vitro relaxivities, in vivo pharmacokinetics, and a pilot in vivo acute toxicity study were also performed. ResultsAn extensive in vitro and in vivo characterization of Hydrochalarone-1 is described here. The hydrodynamic size of Hydrochalarone-1 was 5 to 7 nm depending on the dispersing media, and it was negatively charged at physiological pH. Hydrochalarone-1 showed compatibility with blood cells in vitro, and no significant hemolysis, platelet aggregation, or complement activation was observed in vitro. In addition, Hydrochalarone-1 had significantly higher r1 and r2 in vitro relaxivities in human plasma in comparison with Magnevist and was not toxic at the doses administered in an in vivo pilot acute-dose toxicity study in mice.In vivo MRI pharmacokinetic analysis after a single intravenous injection of Hydrochalarone-1 (0.2 mmol Gd/kg) showed that the volume of distribution at steady state was approximately 100 mL/kg, suggesting prolonged systemic circulation. Hydrochalarone-1 also had a long blood half-life (88 minutes) and increased relaxivity, suggesting application as a promising blood-pool MRI contrast agent. ConclusionsThe evidence suggests that Hydrochalarone-1, with its long systemic half-life, may have significant utility as a blood-pool MRI contrast agent.