Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihong Niu is active.

Publication


Featured researches published by Zhihong Niu.


PLOS ONE | 2015

A Potent Chemotherapeutic Strategy with Eg5 Inhibitor against Gemcitabine Resistant Bladder Cancer

Liang Sun; Jiaju Lu; Zhihong Niu; Kejia Ding; Dongbin Bi; Shuai Liu; Jiamei Li; Fei Wu; Hui Zhang; Zuohui Zhao; Sentai Ding

Development of resistance to gemcitabine is a major concern in bladder cancer therapy, and the mechanism remains unclear. Eg5 has been recently identified as an attractive target in cancer chemotherapy, so novel targeted chemotherapy with Eg5 inhibitor is expected to improve the anticancer effect in gemcitabine-resistant bladder cancer. In this research, RT112-Gr cells were 350-fold less sensitive to gemcitabine than the parental cell lines, while KU7-Gr cells were 15-fold less sensitive to gemcitabine than the parental cell lines. Human OneArray Microarray analysis was performed to obtain broad spectrum information about the genes differentially expressed in RT112 and RT112-Gr cells. The anti-proliferative activity of S(MeO)TLC, an Eg5 inhibitor, was analyzed in RT112-Gr cell lines using a cell viability assay. Furthermore, the inhibitory effect was evaluated in vivo using subcutaneous xenograft tumor model. According to the result of Human OneArray® GeneChip, RRM1 and RRM2 were up-regulated, while there was no significant change in Eg5. Trypan blue staining confirmed that in S(MeO)TLC and Gemcitabine combining S(MeO)TLC group cell viability were significantly decreased in RT112-Gr cells as compared with other groups. S(MeO)TLC and S(MeO)TLC+gemcitabine groups prominently suppressed tumor growth in comparison with other groups’ in vivo. There were no significant differences in S(MeO)TLC and gemcitabine+S(MeO)TLC group in the effect of inhibition of bladder cancer in vivo and in vitro. Our data collectively demonstrated that S(MeO)TLC represents a novel strategy for the treatment of gemcitabine resistant bladder cancer.


Oncology Reports | 2015

Ubenimex inhibits cell proliferation, migration and invasion in renal cell carcinoma: The effect is autophagy-associated

Shuai Liu; Fang Xie; Hafeng Wang; Zheng Liu; Xiaowen Liu; Liang Sun; Zhihong Niu

Ubenimex is a low-molecular-weight dipeptide with the ability to inhibit aminopeptidase N (APN) activity, enhance the function of immunocompetent cells and confer antitumor effects. We sought to characterize the effects of ubenimex on renal cell carcinoma (RCC). The 786-O and OS-RC-2 human RCC cell lines were positive for APN expression and ubenimex decreased APN activity without affecting the expression. Ubenimex suppressed the proliferation of both cell lines in a concentration‑dependent manner, as assessed by curve growth analysis and WST-8 proliferation assay. Wound healing and Matrigel invasion assays demonstrated that the migration and invasion of the RCC cells were also markedly suppressed by ubenimex. Furthermore, ubenimex increased the mortality of both RCC cell lines as determined by the LDH cytotoxicity assay. This affect was accompanied by increased levels of LC3B with no apparent effect on Caspase3; and we observed that autophagy increased significantly after ubenimex treatment in both RCC cell lines by electron microscopy. Moreover, rapamycin enhanced the cytotoxic effect of ubenimex, while 3-methyladenine reversed the effect, indicating that ubenimex cytotoxicity occured through an autophagy-related mechanism. To further assess the potential applicability of ubenimex in the treatment of RCC, we performed immunohistochemistry using tissue microarrays representing 76 RCC patients that underwent radical nephrectomy. The results showed that APN was expressed in most, but not all of the RCC tissues and that the expression was reduced in RCC as compared to the normal kidney tissues, suggesting a potential role for APN in RCC development. Collectively, these results indicated that ubenimex inhibits proliferation, migration and invasion of RCC cells. Ubenimex may induce autophagy, which may be associated with its effect on the growth arrest and the cell death of RCC cells.


Tumor Biology | 2016

CYLD downregulates Livin and synergistically improves gemcitabine chemosensitivity and decreases migratory/invasive potential in bladder cancer: the effect is autophagy-associated

Lei Yin; Shuai Liu; Chensheng Li; Sentai Ding; Dongbin Bi; Zhihong Niu; Liping Han; Wenjia Li; Dexuan Gao; Zheng Liu; Jiaju Lu

Although GC (gemcitabine and cisplatin) chemotherapy remains an effective method for treating bladder cancer (BCa), chemoresistance is a major obstacle in chemotherapy. In this study, we determined whether gemcitabine resistance correlates with migratory/invasive potential in BCa and whether this relationship is regulated by the cylindromatosis (CYLD)-Livin module. First, we independently investigated the correlation of CYLD/Livin and gemcitabine resistance with the potential for tumor migration and invasiveness. Second, we found that co-transfected CYLD and Livin dramatically improved sensitivity to gemcitabine chemotherapy and decreased migration/invasion potential. Next, we determined that CYLD may regulate Livin by the NF-κB-dependent pathway. We also found that CYLD overexpression and Livin knockdown might improve gemcitabine chemosensitivity by decreasing autophagy and increasing apoptosis in BCa cells. Finally, the effects of CYLD-Livin on tumor growth in vivo were evaluated. Our study demonstrates that CYLD-Livin might represent a potential therapeutic for chemoresistant BCa.


Oncology Reports | 2016

Ubenimex inhibits cell proliferation, migration and invasion by inhibiting the expression of APN and inducing autophagic cell death in prostate cancer cells

Xiaoqing Wang; Zhihong Niu; Yang Jia; Meng Cui; Liping Han; Yongfei Zhang; Zheng Liu; Dongbin Bi; Shuai Liu

Prostate cancer is the second most frequently diagnosed cancer in males worldwide and is commonly associated with metastasis. Moreover, in prostate cancer, aminopeptidase N (APN) expression is closely correlated with metastasis. Ubenimex, an APN inhibitor, is widely used as an adjunct therapy for cancer, enhancing the function of immunocompetent cells and conferring antitumor effects. However, due to the low expression of APN, it is rarely used to treat prostate cancer. Recently, the induction of autophagy as a molecular mechanism has been strongly connected with tumor cell death. Thus, we investigated whether ubenimex could inhibit cell proliferation, migration and invasion by downregulating APN expression to induce autophagic cell death in prostate cancer cells. The LNCaP and PC-3 cell lines were treated with different doses of ubenimex. Cell viability was measured using growth curve analysis and WST-8 proliferation assay. Autophagic cell death was assessed using fluorescence microscopy and acridine orange/ethidium bromide (AO/EB) staining. Protein expression was assessed by immunofluorescence and western blot analyses. Autophagosomes were evaluated using transmission electron microscopy. Wound-healing migration assays were performed to determine the migratory ability of the PC-3 cells. In addition, nude mice were used in the present study to examine PC-3 cell proliferation in vivo. The results revealed that APN expression differed between the metastatic and non-metastatic prostate cancer cells. In addition, ubenimex inhibited APN expression in the prostate cancer cells. Ubenimex increased prostate cancer cell death, as determined using the lactate dehydrogenase (LDH) cytotoxicity assay. This effect was accompanied by increased levels of LC3B. Furthermore, ubenimex inhibited PC-3 cell proliferation in vivo and in vitro. Ubenimex inhibited the cell migration and invasion in prostate cancer cells by downregulating APN expression. Finally, ubenimex induced autophagic cell death in both metastatic and non-metastatic prostate cancer cells. Based on these results, ubenimex appears to be an excellent adjunctive therapy for the treatment of prostate cancer.


Oncotarget | 2016

Ubenimex attenuates acquired sorafenib resistance in renal cell carcinoma by inhibiting Akt signaling in a lipophagy associated mechanism

Shuai Liu; Mingwei Gao; Xiaoqing Wang; Sentai Ding; Jiaju Lv; Dexuan Gao; Zhiyang Wang; Zhihong Niu

Sorafenib is used as first line treatment of renal cell carcinoma (RCC) due to the poor sensitivity to radiotherapy and chemotherapy of this malignancy; however, acquired resistance limits the application of sorafenib and its analogues. In this study, we explored a new strategy to overcome acquired resistance to sorafenib. The RCC cell lines 786-O and ACHN were cultured in presence of increasing concentrations of sorafenib to generate sorafenib-resistant cell lines, 786-O-R and ACHN-R. Interestingly, treatment with ubenimex (0.25 mg/ml) and 3-MA (2 mM) restored the sensitivity of resistant cell lines to sorafenib, indicating the involvement of autophagy in acquired resistance. High levels of autophagy flux were observed in resistant cells, and the opposite effects of ubenimex and 3-MA suggested a complex role for autophagy. While 3-MA abolished protection in sorafenib-resistant cells, ubenimex induced uncontrolled autophagy and autophagic cell death. Lipophagy, characterized by a lipid droplet cargo, was observed in RCC tissues and cells. In sorafenib-resistant cells, ubenimex inhibited the Akt signaling pathway that regulates autophagy. In summary, lipophagy participates in sorafenib-resistance of RCC, which could be reversed by interventions targeting the Akt pathway.


Oncotarget | 2017

Risk assessment models to evaluate the necessity of prostate biopsies in North Chinese patients with 4-50 ng/mL PSA

Jing Zhao; Shuai Liu; Dexuan Gao; Sentai Ding; Zhihong Niu; Hui Zhang; Zhilong Huang; Juhui Qiu; Qing Li; Ning Li; Fang Xie; Jilei Cui; Jiaju Lu

Background Prostate-specific antigen (PSA) is widely used for prostate cancer screening, but low specificity results in high false positive rates of prostate biopsies. Objective To develop new risk assessment models to overcome the diagnostic limitation of PSA and reduce unnecessary prostate biopsies in North Chinese patients with 4–50 ng/mL PSA. Methods A total of 702 patients in seven hospitals with 4–10 and 10–50 ng/mL PSA, respectively, who had undergone transrectal ultrasound-guided prostate biopsies, were assessed. Analysis-modeling stage for several clinical indexes related to prostate cancer and renal function was carried out. Multiple logistic regression analyses were used to develop new risk assessment models of prostate cancer for both PSA level ranges 4-10 and 10-50 ng/mL. External validation stage of the new models was performed to assess the necessity of biopsy. Results The new models for both PSA ranges performed significantly better than PSA for detecting prostate cancers. Both models showed higher areas under the curves (0.937 and 0.873, respectively) compared with PSA alone (0.624 and 0.595), at pre-determined cut-off values of 0.1067 and 0.6183, respectively. Patients above the cut-off values were recommended for immediate biopsy, while the others were actively observed. External validation of the models showed significantly increased detection rates for prostate cancer (4-10 ng/mL group, 39.29% vs 17.79%, p=0.006; 10-50 ng/mL group, 71.83% vs 50.0%, p=0.015). Conclusions We developed risk assessment models for North Chinese patients with 4–50 ng/mL PSA to reduce unnecessary prostate biopsies and increase the detection rate of prostate cancer.


Biomedicine & Pharmacotherapy | 2017

HCRP1 regulates proliferation, invasion, and drug resistance via EGFR signaling in prostate cancer

Liang Sun; Jiaju Lu; Sentai Ding; Dongbin Bi; Kejia Ding; Zhihong Niu; Ping Liu

Previous studies showed that HCRP1 is decreased in tumor cells compared with normal tissue, and functions as a tumor suppressor. However, its expression pattern and function in human prostate cancer remain unclear. In this study we examined HCRP1 expression in prostate cancer cell lines via western blotting. Thereafter, we performed CCK-8 assay and matrigel invasion assay after cells were transfected with HCRP1 overexpression plasmid or siRNA. We further investigated the possible mechanism involved in HCRP1s regulation to prostate cancer cell proliferation and invasion. We found that HCRP1 negatively regulates EGFR activity and expression of its downstream proteins. Moreover, we found that HCRP1 is negatively correlated with multi-drug resistant related proteins after cells were treated with paclitaxel, cisplatin or gefitinib, indicating its inhibiting effect of chemotherapy resistance. In summary, our results provided evidence that HCRP1 is a negative regulator in prostate cancer progression, metastasis and multi-drug resistance.


Medical Oncology | 2013

The expression of Eg5 predicts a poor outcome for patients with renal cell carcinoma.

Dingqi Sun; Jiaju Lu; Kejia Ding; Dongbin Bi; Zhihong Niu; Qingwei Cao; Jie Zhang; Sentai Ding


International Journal of Clinical and Experimental Pathology | 2015

Nephroblastoma overexpressed gene (NOV) enhances RCC cell motility through upregulation of ICAM-1 and COX-2 expression via Akt pathway.

Shuai Liu; Liping Han; Xiaoqing Wang; Zheng Liu; Sentai Ding; Jiaju Lu; Dongbin Bi; Yikun Mei; Zhihong Niu


Oncology Letters | 2012

CCN3 (NOV) regulates proliferation, adhesion, migration and invasion in clear cell renal cell carcinoma

Shuai Liu; Zheng Liu; Dongbin Bi; Xaodong Yuan; Xiaowen Liu; Sentai Ding; Jiaju Lu; Zhihong Niu

Collaboration


Dive into the Zhihong Niu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge