Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihong Sun is active.

Publication


Featured researches published by Zhihong Sun.


Animal Reproduction Science | 2013

Protein or energy restriction during late gestation alters fetal growth and visceral organ mass: an evidence of intrauterine programming in goats.

Zhixiong He; Duanqin Wu; Zhihong Sun; Zhiliang Tan; J.Y. Qiao; Tao Ran; Shaoxun Tang; Chuanshe Zhou; Xuefeng Han; Meng Wang; Jinhe Kang; K. A. Beauchemin

The objective of this study was to examine the effects of maternal protein or energy restriction during late gestation on postnatal fetal growth and visceral organ mass of goats. Eighty pregnant goats with similar age (2.0 ± 0.3 yr) and body weight (BW, 20.0 ± 1.0 kg before pregnancy) were assigned to 3 dietary treatments during late gestation: control (CON), 40% protein restricted (PR) and 40% energy restricted (ER) diets until parturition, after which offspring received normal diets for nutritional recovery. Kids were killed and visceral tissues were harvested at birth and week 6. Maternal protein or energy restriction decreased (P < 0.05) birth weight, and the weights of thymus, heart, abomasums, small intestine. The length of fetus from PR and ER were all decreased (P < 0.05) compared with that from control. When expressed relative to BW, thymus and small intestine for PR and ER still remained less (P < 0.05) than that for control. After 6 weeks of nutritional recovery, there was no difference (P = 0.91) in BW among groups; the kids from nutritional restriction groups showed a greater (P < 0.05) growth rate compared with kids from CON. Moreover, liver (only in ER, P < 0.10) and kidney (only in ER, P < 0.05) were proportionally increased to BW at week 6. The results indicate that maternal protein or energy restriction programs the fetal growth in goats, particularly the proportional responses of fetal organs relative to BW, including thymus, small intestine, kidney and liver.


Journal of Animal Science | 2012

Effects of maternal protein or energy restriction during late gestation on antioxidant status of plasma and immune tissues in postnatal goats

Zhixiong He; Zhihong Sun; Zhiliang Tan; Shaoxun Tang; Chuanshe Zhou; Xuefeng Han; Min Wang; Duanqin Wu; Jinhe Kang; K. A. Beauchemin

Maternal malnutrition can have temporary or long-lasting effects on development and physiological function of offspring. Our objective was to investigate whether maternal protein or energy restriction in late gestation affects the antioxidant status of plasma, immune organs (thymus and spleen), and natural barrier organs (jejunum) in neonatal goats and whether the effects could be reversed after nutritional recovery. Forty-five pregnant goats (Liuyang Blacks) of similar age (2.0 ± 0.3 yr) and BW (22.2 ± 1.5 kg at d 90 of gestation) were assigned to 3 dietary treatments during late gestation: control (ME = 9.34 MJ/kg and CP = 12.5%, DM basis), 40% protein restricted (PR), and 40% energy restricted (ER) until parturition, after which offspring received the normal diet for nutritional recovery. Plasma and tissues of kids were sampled to determine antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and catalase (CAT)] and gene expression of antioxidant enzymes (Cu/Zn-SOD [SOD1], CAT, and peroxiredoxin 2 [PRDX2]). Maternal protein or energy restriction decreased (P < 0.05) SOD activities in plasma, liver, thymus, and spleen and SOD1 expression in thymus, and maternal energy restriction also decreased (P < 0.05) plasma GSH-Px activity and expressions of SOD1 and CAT in liver at birth. After nutritional recovery of 6 wk, SOD activities in thymus (both in PR and ER) and spleen (only in PR) were greater (P < 0.05), but CAT activity of thymus (both in PR and ER) and CAT expression (only in ER) were less (P < 0.01) than those in control. After nutritional recovery of 22 wk, SOD1 and PRDX2 expression in thymus (both in PR and ER) and SOD1 expression in liver (only in ER) were greater (P < 0.05) whereas CAT expression in thymus (both in PR and ER) was less (P < 0.001) than in control. The current results indicate that maternal protein or energy restriction can decrease the antioxidant capacity of the neonatal kids and result in an imbalance of SOD and hydrogen peroxide-inactivating systems in thymus, even after 6 or 22 wk of nutritional recovery.


Journal of Animal Science | 2014

Effects of maternal protein or energy restriction during late gestation on immune status and responses to lipopolysaccharide challenge in postnatal young goats

Z. X. He; Zhihong Sun; W.Z. Yang; K. A. Beauchemin; Shaoxun Tang; Chuanshe Zhou; Xuefeng Han; Min Wang; Jinhe Kang; Zhiliang Tan

Knowledge of maternal malnutrition of ruminants and effects on development of the immune system of their offspring is lacking. A study was conducted to investigate the effects of maternal protein or energy restriction during late gestation on immune status of their offspring at different ages. Sixty-three pregnant goats (local breed, Liuyang black goat, 22.2 ± 1.5 kg at d 90 of gestation) were fed control (CON, ME = 9.34 MJ/kg and CP = 12.5%, DM basis), 40% protein restricted (PR), or 40% energy restricted (ER) diets from d 91 of gestation to parturition, after which all animals received an adequate diet for nutritional recovery. Plasma concentrations of complement components (C3, C4), C-reactive protein (CRP) and immunoglobulins (IgG and IgM), jejunum cytokines (IL-2, IL-6, and IL-10) expression levels and morphology in the offspring were measured. Additionally, plasma concentration of complement and IL-6, and cytokines expression levels in gastrointestinal tract obtained at 6 wk from young goats were assessed under saline or lipopolysaccharide (LPS) challenging conditions. Maternal PR or ER decreased (P < 0.05) plasma C3, C4, IgG, and IgM concentrations, and IL-2 and IL-6 mRNA expression in the jejunum from neonatal kids, but did not alter (P > 0.05) plasma CRP concentration. The IL-10 mRNA expression of jejunum from PR kids was also less (P < 0.01) than that from CON kids. Moreover, jejunum villous height (P < 0.10 in PR, P < 0.05 in ER) and crypt depth (P < 0.05 both in PR and ER) were reduced in neonatal kids from malnourished mothers. At 6 wk of age, there were no differences (P > 0.05) in any plasma or tissue immune parameters among the 3 treatments. However, when given a LPS challenge, ER and PR kids had greater (P = 0.02) IL-6 concentration compared with CON kids. Our results suggest that both PR and ER during late gestation induced short-term as well as long-lasting alterations on immune responses in their offspring, which may make the animals more susceptible to a bacterial pathogen challenge. The present findings expand the existing knowledge in immunological mechanisms responsible for the development of disease in later life.


PLOS ONE | 2014

Alteration of Antioxidant Enzymes and Associated Genes Induced by Grape Seed Extracts in the Primary Muscle Cells of Goats In Vitro

Tan Yang; Xiaomin Li; Wang Zhu; Cheng Chen; Zhihong Sun; Zhiliang Tan; Jinghe Kang

This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.


British Journal of Nutrition | 2014

Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers.

Xiaomin Li; You Yang; Shimin Liu; Jing Yang; Cheng Chen; Zhihong Sun

Grape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum epithelial cells (JEC) in cattle. The JEC of a steer (Simmental × Qinchuan) were exposed to heat stress for 2 h in the absence (0 μg/ml) or presence (10, 20, 40 and 80 μg/ml) of GSE in the culture medium. When cultured at 40°C, JEC supplemented with GSE exhibited increased glutathione peroxidase activity (P= 0·04), viability (P= 0·004), and mRNA expression of epidermal growth factor (EGF; P= 0·03) and EGF receptor (EGFR; P = 0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P= 0·01) and TNF-α (P= 0·03) and decreased protein concentrations of IL-1β (P= 0·02), Toll-like receptor 4 (TLR4; P= 0·04) and heat shock protein 70 (HSP70; P< 0·001). When cultured at 43°C, JEC supplemented with GSE exhibited increased catalase activity (P= 0·04), viability (P< 0·001), and mRNA expression of EGF (P< 0·001) and EGFR (P< 0·001) and decreased protein concentrations of IL-1β (P< 0·001), TLR4 (P= 0·03) and HSP70 (P< 0·001), as well as mRNA expression of IL-8 (P< 0·001), TLR4 (P= 0·002) and TNF-α (P< 0·001). Temperature × GSE concentration interactions were also observed for the concentrations of IL-1β (P< 0·001), IL-8 (P< 0·001), TNF-α (P= 0·01) and HSP70 (P= 0·04) and viability (P< 0·001) of JEC. The results of the present study indicate that GSE can attenuate the responses of JEC induced by heat stress within a certain range of temperatures.


Animal | 2015

Effect of protein or energy restriction during late gestation on hormonal and metabolic status in pregnant goats and postnatal male offspring

Zhixiong He; Zhihong Sun; K. A. Beauchemin; W.Z. Yang; Shaoxun Tang; Chuanshe Zhou; Xuefeng Han; Min Wang; Jinhe Kang; Zhiliang Tan

The objective of this study was to investigate the effects of maternal protein or energy restriction on hormonal and metabolic status of pregnant goats during late gestation and their postnatal male kids. Forty-five pregnant goats were fed a control (CON), 40% protein-restricted (PR) or 40% energy-restricted (ER) diet from 90 days of gestation until parturition. Plasma of mothers (90, 125 and 145 days of gestation) and kids (6 weeks of age) were sampled to determine metabolites and hormones. Glucose concentration for pregnant goats subjected to PR or ER was less (P < 0.001) than that of CON goats at 125 and 145 days of gestation. However, plasma nonesterified fatty acids concentration was greater (P < 0.01) at 125 and 145 days for PR and ER than CON. Protein restriction increased (P < 0.01) maternal cortisol concentration by 145 days of gestation, and ER decreased (P < 0.01) maternal insulin concentration at 125 days of gestation. Moreover, maternal amino acid (AA) concentrations were affected by nutritional restriction, with greater (P < 0.05) total AA (TAA) and nonessential AA (NEAA) for PR goats but less (P < 0.05) TAA and NEAA for ER goats at 125 days of gestation. After 6 weeks of nutritional recovery, plasma concentrations of most metabolic and hormonal parameters in restricted kids were similar to CON kids, except for reduced (P < 0.05) insulin concentration in ER, and reduced (P < 0.05) Asp concentration in PR and ER kids. These results provide information on potential metabolic mechanisms responsible for fetal programming.


Journal of Animal Science | 2018

Pyruvate is an effective substitute for glutamate in regulating porcine nitrogen excretion

Yunxia Li; Zhiru Tang; Tiejun Li; Cheng Chen; Feiruo Huang; Jing Yang; Qingqing Xu; Jifu Zhen; Zhaoliang Wu; Mao Li; Jiajing Sun; Jinchao Chen; Xiangxin Zhang; Liuting Wu; Rui An; Shengjun Zhao; Qingyan Jiang; Weiyun Zhu; Yulong Yin; Zhihong Sun

This study was performed to determine if pyruvate, which acts as a critical intermediate in energy metabolism, can substitute the role of glutamate as a metabolic fuel and effectively reduce nitrogen excretion in pigs. First, the experiment in vitro was carried out to investigate the effects of culturing porcine small intestinal epithelial cell line with pyruvate on the oxidation. Then, barrows weighing 40 kg were used in the experiment investigating the changes of nitrogen balance in response to addition of pyruvate to low-protein diets. Last, barrows (40 kg), which were surgically fitted with permanent catheters in the mesenteric vein, portal vein, hepatic vein, and carotid artery, were used to investigate the effects of supplementing low-protein diets with calcium pyruvate on the net portal fluxes of amino acids (AAs) and the consumption of AAs in the liver. The results showed that culturing cells with sodium pyruvate significantly reduced the number of glutamate oxidation (P < 0.05). Addition of calcium pyruvate to low-protein diets significantly reduced urinary nitrogen excretion from 13.2 g/d (18.0% crude protein, CP) to 10.3 g/d (15.0% CP) or 7.80 g/d (13.5% CP) and total nitrogen excretion from 22.5 g/d (18.0% CP) to 17.8 g/d (15.0% CP) or 14.2 g/d (13.5% CP) (P < 0.05), without obviously negative effects on the nitrogen retention (P > 0.05). Addition of calcium pyruvate to low-protein diets significantly decreased essential AA consumption rate in the liver (P < 0.05). This diet modification reduced the net portal fluxes of NH3, glycine, and alanine, as well as urea production rate in the liver (P < 0.05). The results indicated that pyruvate is an effective substitute for glutamate as a supplement in low-protein diets, reducing porcine nitrogen excretion and nitrogen consumption.


Journal of Agricultural and Food Chemistry | 2018

Activation of Pyruvate Dehydrogenase by Sodium Dichloroacetate Shifts Metabolic Consumption from Amino Acids to Glucose in IPEC-J2 Cells and Intestinal Bacteria in Pigs

Rui An; Zhiru Tang; Yunxia Li; Tiejun Li; Qingqing Xu; Jifu Zhen; Feiru Huang; Jing Yang; Cheng Chen; Zhaoliang Wu; Mao Li; Jiajing Sun; Xiangxin Zhang; Jinchao Chen; Liuting Wu; Shengjun Zhao; Jiang Qingyan; Weiyun Zhu; Yulong Yin; Zhihong Sun

The extensive metabolism of amino acids (AA) as fuel is an important reason for the low use efficiency of protein in pigs. In this study, we investigated whether regulation of the pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase alpha 1 (PDHA1) pathway affected AA consumption by porcine intestinal epithelial (IPEC-J2) cells and intestinal bacteria in pigs. The effects of knockdown of PDHA1 and PDK1 with small interfering RNA (siRNA) on nutrient consumption by IPEC-J2 cells were evaluated. IPEC-J2 cells were then cultured with sodium dichloroacetate (DCA) to quantify AA and glucose consumption and nutrient oxidative metabolism. The results showed that knockdown of PDHA1 using siRNA decreased glucose consumption but increased total AA (TAA) and glutamate (Glu) consumption by IPEC-J2 cells ( P < 0.05). Opposite effects were observed using siRNA targeting PDK1 ( P < 0.05). Additionally, culturing IPEC-J2 cells in the presence of 5 mM DCA markedly increased the phosphorylation of PDHA1 and PDH phosphatase 1, but inhibited PDK1 phosphorylation ( P < 0.05). DCA treatment also reduced TAA and Glu consumption and increased glucose depletion ( P < 0.05). These results indicated that PDH was the regulatory target for shifting from AA metabolism to glucose metabolism and that culturing cells with DCA decreased the consumption of AAs by increasing the depletion of glucose through PDH activation.


Journal of Agricultural and Food Chemistry | 2018

Low-Protein Diets Decrease Porcine Nitrogen Excretion but with Restrictive Effects on Amino Acid Utilization

Liuting Wu; Xiangxin Zhang; Zhiru Tang; Yunxia Li; Tiejun Li; Qingqing Xu; Jifu Zhen; Feiruo Huang; Jing Yang; Cheng Chen; Zhaoliang Wu; Mao Li; Jiajing Sun; Jinchao Chen; Rui An; Shengjun Zhao; Qingyan Jiang; Weiyun Zhu; Yulong Yin; Zhihong Sun

Reducing dietary crude protein (CP) intake effectively decreases nitrogen excretion in growing-finishing pigs but at the expense of poor growth when dietary CP content is reduced by ≥3%. In this study, we investigated the main disadvantages of low-protein diets supplemented with lysine, methionine, threonine, and tryptophan in pigs. First, changes in the nitrogen balance in response to differences in dietary CP content (18%, 15%, and 13.5%) were investigated in barrows (40 kg). Then, barrows (40 kg) surgically fitted with catheters in the mesenteric vein, portal vein, hepatic vein, and carotid artery were used to investigate changes in amino acid (AA) metabolism in the portal-drained viscera and liver in response to differences in dietary CP content. The results showed that low-protein diets reduced fecal and urinary nitrogen excretion ( P < 0.05) meanwhile resulted in significant decreases in nitrogen retention ( P < 0.05). Moreover, a reduction in the dietary CP content from 18% to 13.5% resulted in decreases in the net portal fluxes of NH3, glycine, and alanine as well as in the urea production in the liver ( P < 0.05), whereas their values as a percentage of nitrogen intake did not decline ( P > 0.05). The net portal fluxes of nonessential AA (NEAA) were reduced in the low-protein diet groups ( P < 0.05), while essential AA consumption in the liver increased ( P < 0.05). Thus, low-protein diets result in reductions in both nitrogen excretion and retention, and NEAA deficiency may be a major disadvantage of low-protein diets.


Archive | 2012

Fat lamb concentrate supplement

Daijun Song; You Yang; Guozhong Dong; Zhihong Sun; Zhiru Tang; Zhouquan Li; Jingzhi Lv; Zhuo Zhang

Collaboration


Dive into the Zhihong Sun's collaboration.

Top Co-Authors

Avatar

Zhiliang Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuefeng Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

K. A. Beauchemin

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Chuanshe Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhe Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaoxun Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhixiong He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge