Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihong Zeng is active.

Publication


Featured researches published by Zhihong Zeng.


Blood | 2009

Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML

Zhihong Zeng; Yue Xi Shi; Ismael Samudio; Rui Yu Wang; Xiaoyang Ling; Olga Frolova; Mark Levis; Joshua B. Rubin; Robert R. Negrin; Elihu H. Estey; Sergej Konoplev; Michael Andreeff; Marina Konopleva

SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-1alpha-induced activation of prosurvival signaling pathways in leukemic cells. Further, CXCR4 inhibition partially abrogated the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. Fetal liver tyrosine kinase-3 (FLT3) gene mutations activate CXCR4 signaling, and coculture with stromal cells significantly diminished antileukemia effects of FLT3 inhibitors in cells with mutated FLT3. Notably, CXCR4 inhibition increased the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib. In vivo studies demonstrated that AMD3465, alone or in combination with granulocyte colony-stimulating factor, induced mobilization of AML cells and progenitor cells into circulation and enhanced antileukemic effects of chemotherapy and sorafenib, resulting in markedly reduced leukemia burden and prolonged survival of the animals. These findings indicate that SDF-1alpha/CXCR4 interactions contribute to the resistance of leukemic cells to signal transduction inhibitor- and chemotherapy-induced apoptosis in systems mimicking the physiologic microenvironment. Disruption of these interactions with CXCR4 inhibitors represents a novel strategy of sensitizing leukemic cells by targeting their protective bone marrow microenvironment.


Clinical Cancer Research | 2006

Phase I/II Study of the Mammalian Target of Rapamycin Inhibitor Everolimus (RAD001) in Patients with Relapsed or Refractory Hematologic Malignancies

Karen W.L. Yee; Zhihong Zeng; Marina Konopleva; Srdan Verstovsek; Farhad Ravandi; Alessandra Ferrajoli; Deborah A. Thomas; William G. Wierda; Efrosyni Apostolidou; Maher Albitar; Susan O'Brien; Michael Andreeff; Francis J. Giles

Purpose: Everolimus (RAD001, Novartis), an oral derivative of rapamycin, inhibits the mammalian target of rapamycin (mTOR), which regulates many aspects of cell growth and division. A phase I/II study was done to determine safety and efficacy of everolimus in patients with relapsed or refractory hematologic malignancies. Experimental Design: Two dose levels (5 and 10 mg orally once daily continuously) were evaluated in the phase I portion of this study to determine the maximum tolerated dose of everolimus to be used in the phase II study. Results: Twenty-seven patients (9 acute myelogenous leukemia, 5 myelodysplastic syndrome, 6 B-chronic lymphocytic leukemia, 4 mantle cell lymphoma, 1 myelofibrosis, 1 natural killer cell/T-cell leukemia, and 1 T-cell prolymphocytic leukemia) received everolimus. No dose-limiting toxicities were observed. Grade 3 potentially drug-related toxicities included hyperglycemia (22%), hypophosphatemia (7%), fatigue (7%), anorexia (4%), and diarrhea (4%). One patient developed a cutaneous leukocytoclastic vasculitis requiring a skin graft. One patient with refractory anemia with excess blasts achieved a major platelet response of over 3-month duration. A second patient with refractory anemia with excess blasts showed a minor platelet response of 25-day duration. Phosphorylation of downstream targets of mTOR, eukaryotic initiation factor 4E-binding protein 1, and/or, p70 S6 kinase, was inhibited in six of nine patient samples, including those from the patient with a major platelet response. Conclusions: Everolimus is well tolerated at a daily dose of 10 mg daily and may have activity in patients with myelodysplastic syndrome. Studies of everolimus in combination with therapeutic agents directed against other components of the phosphatidylinositol 3-kinase/Akt/mTOR pathway are warranted.


Molecular Cancer Therapeutics | 2006

Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias

Zhihong Zeng; Ismael Samudio; Mark F. Munsell; Jing An; Ziwei Huang; Elihu H. Estey; Michael Andreeff; Marina Konopleva

The chemokine receptor CXCR4 mediates the migration of hematopoietic cells to the stroma-derived factor 1α (SDF-1α)–producing bone marrow microenvironment. Using peptide-based CXCR4 inhibitors derived from the chemokine viral macrophage inflammatory protein II, we tested the hypothesis that the inhibition of CXCR4 increases sensitivity to chemotherapy by interfering with stromal/leukemia cell interactions. First, leukemic cells expressing varying amounts of surface CXCR4 were examined for their chemotactic response to SDF-1α or stromal cells, alone or in the presence of different CXCR4 inhibitors. Results showed that the polypeptide RCP168 had the strongest antagonistic effect on the SDF-1α– or stromal cell–induced chemotaxis of leukemic cells. Furthermore, RCP168 blocked the binding of anti-CXCR4 monoclonal antibody 12G5 to surface CXCR4 in a concentration-dependent manner and inhibited SDF-1α–induced AKT and extracellular signal-regulated kinase phosphorylation. Finally, RCP168 significantly enhanced chemotherapy-induced apoptosis in stroma-cocultured Jurkat, primary chronic lymphocytic leukemia, and in a subset of acute myelogenous leukemia cells harboring Flt3 mutation. Equivalent results were obtained with the small-molecule CXCR4 inhibitor AMD3465. Our data therefore suggest that the SDF-1α/CXCR4 interaction contributes to the resistance of leukemia cells to chemotherapy-induced apoptosis. Disruption of these interactions by the peptide CXCR4 inhibitor RCP168 represents a novel strategy for targeting leukemic cells within the bone marrow microenvironment. [Mol Cancer Ther 2006;5(12):3113–21]


Drug Resistance Updates | 2009

Therapeutic targeting of microenvironmental interactions in leukemia: Mechanisms and approaches

Marina Konopleva; Yoko Tabe; Zhihong Zeng; Michael Andreeff

In hematological malignancies, there are dynamic interactions between leukemic cells and cells of the bone marrow microenvironment. Specific niches within the bone marrow microenvironment provide a sanctuary for subpopulations of leukemic cells to evade chemotherapy-induced death and allow acquisition of a drug-resistant phenotype. This review focuses on molecular and cellular biology of the normal hematopoietic stem cell and the leukemia stem cell niche, and of the molecular pathways critical for microenvironment/leukemia interactions. The key emerging therapeutic targets include chemokine receptors (CXCR4), adhesion molecules (VLA4 and CD44), and hypoxia-related proteins HIF-1alpha and VEGF. Finally, the genetic and epigenetic abnormalities of leukemia-associated stroma will be discussed. This complex interplay provides a rationale for appropriately tailored molecular therapies targeting not only leukemic cells but also their microenvironment to ensure improved outcomes in leukemia.


Cancer Research | 2007

The novel triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid inhibits metastatic murine breast tumor growth through inactivation of STAT3 signaling

Xiaoyang Ling; Marina Konopleva; Zhihong Zeng; Vivian Ruvolo; L. Clifton Stephens; Wendy D. Schober; Teresa McQueen; Martin Dietrich; Timothy Madden; Michael Andreeff

We and others have reported that C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) effectively inhibits the growth of multiple cancer cell types. Our previous studies indicated that prolonged CDDO-Me treatment inactivated extracellular signal-regulated kinase signaling in acute myelogenous leukemia cells. Whether treatment with CDDO-Me has an earlier effect on other proteins that are important for either signal transduction or oncogenesis is unknown. Constitutively activated signal transducer and activator of transcription 3 (STAT3) is frequently found in human breast cancer samples. Constitutively activated STAT3 was shown to up-regulate c-Myc in several types of cancer and has a feedback effect on Src and Akt. To examine the effects of CDDO-Me on STAT3 signaling in breast cancer, we used the murine 4T1 breast tumor model, which is largely resistant to chemotherapy. In vitro, after treatment of 4T1 cells with 500 nmol/L CDDO-Me for 2 h, we found (a) inactivation of STAT3, (b) inactivation of Src and Akt, (c) 4-fold reduction of c-Myc mRNA levels, (d) accumulation of cells in G(2)-M cell cycle phase, (e) abrogation of invasive growth of 4T1 cells, and (f) lack of apoptosis induction. In in vivo studies, CDDO-Me completely eliminated 4T1 breast cancer growth and lung metastases induced by 4T1 cells in mice when treatment started 1 day after tumor implantation and significantly inhibited tumor growth when started after 5 days. In vivo studies also indicated that splenic mature dendritic cells were restored after CDDO-Me treatment. In summary, these data suggest that CDDO-Me may have therapeutic potential in breast cancer therapy, in part, through inactivation of STAT3.


Blood | 2015

Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy.

Byung Sik Cho; Zhihong Zeng; Hong Mu; Zhiqiang Wang; Sergej Konoplev; Teresa McQueen; Marina Protopopova; Jorge Cortes; Joseph R. Marszalek; Sheng Bin Peng; Wencai Ma; R. Eric Davis; Donald Thornton; Michael Andreeff; Marina Konopleva

Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibited stromal cell-derived factor 1 (SDF-1)α-induced chemotaxis and prosurvival signals of AML cells at nanomolar concentrations more effectively than the small-molecule CXCR4 antagonist AMD3100. In vitro, LY2510924 chiefly inhibited the proliferation of AML cells with little induction of cell death and reduced protection against chemotherapy by stromal cells. In mice with established AML, LY2510924 caused initial mobilization of leukemic cells into the circulation followed by reduction in total tumor burden. LY2510924 had antileukemia effects as monotherapy as well as in combination with chemotherapy. Gene expression profiling of AML cells isolated from LY2510924-treated mice demonstrated changes consistent with loss of SDF-1α/CXCR4 signaling and suggested reduced proliferation and induction of differentiation, which was proved by showing the attenuation of multiple prosurvival pathways such as PI3K/AKT, MAPK, and β-catenin and myeloid differentiation in vivo. Effective disruption of the SDF-1α/CXCR4 axis by LY2510924 may translate into effective antileukemia therapy in future clinical applications.


Clinical Cancer Research | 2014

Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia.

Marina Konopleva; Roland B. Walter; Stefan Faderl; Elias Jabbour; Zhihong Zeng; Gautam Borthakur; Xuelin Huang; Tapan Kadia; Peter P. Ruvolo; Jennie Feliu; Hongbo Lu; La Kiesha Debose; Jan A. Burger; Michael Andreeff; Wenbin Liu; Keith A. Baggerly; Steven M. Kornblau; L. Austin Doyle; Elihu H. Estey; Hagop M. Kantarjian

Purpose: Recent studies suggested that AKT activation might confer poor prognosis in acute myelogenous leukemia (AML), providing the rationale for therapeutic targeting of this signaling pathway. We, therefore, explored the preclinical and clinical anti-AML activity of an oral AKT inhibitor, MK-2206. Experimental Methods: We first studied the effects of MK-2206 in human AML cell lines and primary AML specimens in vitro. Subsequently, we conducted a phase II trial of MK-2206 (200 mg weekly) in adults requiring second salvage therapy for relapsed/refractory AML, and assessed target inhibition via reverse phase protein array (RPPA). Results: In preclinical studies, MK-2206 dose-dependently inhibited growth and induced apoptosis in AML cell lines and primary AML blasts. We then treated 19 patients with MK-2206 but, among 18 evaluable participants, observed only 1 (95% confidence interval, 0%–17%) response (complete remission with incomplete platelet count recovery), leading to early study termination. The most common grade 3/4 drug-related toxicity was a pruritic rash in 6 of 18 patients. Nevertheless, despite the use of MK-2206 at maximum tolerated doses, RPPA analyses indicated only modest decreases in Ser473 AKT (median 28%; range, 12%–45%) and limited inhibition of downstream targets. Conclusions: Although preclinical activity of MK-2206 can be demonstrated, this inhibitor has insufficient clinical antileukemia activity when given alone at tolerated doses, and alternative approaches to block AKT signaling should be explored. Clin Cancer Res; 20(8); 2226–35. ©2014 AACR.


Science Signaling | 2016

ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

Jo Ishizawa; Kensuke Kojima; Dhruv Chachad; Peter P. Ruvolo; Vivian Ruvolo; Rodrigo Jacamo; Gautam Borthakur; Hong Mu; Zhihong Zeng; Yoko Tabe; Joshua E. Allen; Zhiqiang Wang; Wencai Ma; Hans C. Lee; Robert Z. Orlowski; Dos D. Sarbassov; Philip L. Lorenzi; Xuelin Huang; Sattva S. Neelapu; Timothy J. McDonnell; Roberto N. Miranda; Michael Wang; Hagop M. Kantarjian; Marina Konopleva; R. Eric Davis; Michael Andreeff

ONC201 triggers an apoptotic cellular stress response in both solid and blood tumors. Stressing cancer cells to death The anticancer drug ONC201 triggers cell death in various tumor types. A pair of papers (see also the Focus by Greer and Lipkowitz) shows that ONC201 activated cell stress pathways that depended on the activation of the transcription factor ATF4. Kline et al. showed that this stress response to ONC201 occurred in cells derived from various types of solid tumors, in which ATF4 activation led to an increase in the abundance of the proapoptotic protein TRAIL and its receptor DR5. Ishizawa et al. demonstrated that in acute myeloid leukemias and mantle cell lymphoma, ONC201 triggered apoptosis and inhibited mTORC1 signaling, a pathway that promotes cell growth and proliferation. The findings reveal more details about ONC201’s mechanism of action, potentially enabling patient stratification and future development to improve its efficacy. The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.


Cytometry Part A | 2015

Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.

Lina Han; Peng Qiu; Zhihong Zeng; Jeffrey L. Jorgensen; Duncan H. Mak; Jared K. Burks; Wendy D. Schober; Teresa McQueen; Jorge Cortes; Scott D. Tanner; Gail J. Roboz; Hagop M. Kantarjian; Steven M. Kornblau; Monica L. Guzman; Michael Andreeff; Marina Konopleva

Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single‐cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen‐defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235‐induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p‐4EBP1, p‐AKT, and p‐S6, particularly in CD34+ subsets. We evaluated multiple signaling pathways in antigen‐defined subpopulations in primary AML cells with FLT3‐ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p‐4EBP1 and p‐S6 were exclusively found in FLT3‐ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen‐defined subpopulations in primary AML, which may provide a rationale for designing therapeutics targeting LSC‐enriched cell populations.


PLOS ONE | 2013

TGF-β-Neutralizing Antibody 1D11 Enhances Cytarabine-Induced Apoptosis in AML Cells in the Bone Marrow Microenvironment.

Yoko Tabe; Yue Xi Shi; Zhihong Zeng; Linhua Jin; Masato Shikami; Yasuhito Hatanaka; Takashi Miida; Frank J. Hsu; Michael Andreeff; Marina Konopleva

Hypoxia and interactions with bone marrow (BM) stromal cells have emerged as essential components of the leukemic BM microenvironment in promoting leukemia cell survival and chemoresistance. High levels of transforming growth factor beta 1 (TGFβ1) produced by BM stromal cells in the BM niche regulate cell proliferation, survival, and apoptosis, depending on the cellular context. Exogenous TGFβ1 induced accumulation of acute myeloid leukemia (AML) cells in a quiescent G0 state, which was further facilitated by the co-culture with BM-derived mesenchymal stem cells (MSCs). In turn, TGFβ-neutralizing antibody 1D11 abrogated rhTGFβ1 induced cell cycle arrest. Blocking TGFβ with 1D11 further enhanced cytarabine (Ara-C)–induced apoptosis of AML cells in hypoxic and in normoxic conditions. Additional constituents of BM niche, the stroma-secreted chemokine CXCL12 and its receptor CXCR4 play crucial roles in cell migration and stroma/leukemia cell interactions. Treatment with 1D11 combined with CXCR4 antagonist plerixafor and Ara-C decreased leukemia burden and prolonged survival in an in vivo leukemia model. These results indicate that blockade of TGFβ by 1D11 and abrogation of CXCL12/CXCR4 signaling may enhance the efficacy of chemotherapy against AML cells in the hypoxic BM microenvironment.

Collaboration


Dive into the Zhihong Zeng's collaboration.

Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Andreeff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Teresa McQueen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Steven M. Kornblau

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter P. Ruvolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivian Ruvolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rui-Yu Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gautam Borthakur

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hong Mu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge