Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihui Ai is active.

Publication


Featured researches published by Zhihui Ai.


Environmental Science & Technology | 2013

Core–Shell Structure Dependent Reactivity of Fe@Fe2O3 Nanowires on Aerobic Degradation of 4-Chlorophenol

Zhihui Ai; Zhiting Gao; Lizhi Zhang; Weiwei He; Jun Jie Yin

In this study, core-shell Fe@Fe₂O₃ nanowires with different iron oxide shell thickness were synthesized through tuning water-aging time after the reduction of ferric ions with sodium borohydride without any stirring. We found that these Fe@Fe₂O₃ nanowires exhibited interesting core-shell structure dependent reactivity on the aerobic degradation of 4-chlorophenol. Characterization results revealed that the core-shell structure dependent aerobic oxidative reactivity of Fe@Fe₂O₃ nanowires was arisen from the combined effects of incrassated iron oxide shell and more surface bound ferrous ions on amorphous iron oxide shell formed during the water-aging process. The incrassated iron oxide shell would gradually block the outward electron transfer from iron core for the subsequent two-electron molecular oxygen activation, but more surface bound ferrous ions on iron oxide shell with prolonging aging time could favor the single-electron molecular oxygen activation, which was confirmed by electron spin resonance spectroscopy with spin trap technique. The mineralization of 4-chlorophenol was monitored by total organic carbon measurement and the oxidative degradation intermediates were analyzed by gas chromatography-mass spectrometry. This study provides new physical insight on the molecular oxygen activation mechanism of nanoscale zerovalent iron and its application on aerobic pollutant removal.


Environmental Science & Technology | 2015

Protocatechuic Acid Promoted Alachlor Degradation in Fe(III)/H2O2 Fenton System

Yaxin Qin; Fahui Song; Zhihui Ai; Pingping Zhang; Lizhi Zhang

In this study, we demonstrate that protocatechuic acid (PCA) can significantly promote the alachlor degradation in the Fe(III)/H2O2 Fenton oxidation system. It was found that the addition of protocatechuic acid could increase the alachlor degradation rate by 10 000 times in this Fenton oxidation system at pH = 3.6. This dramatic enhancement of alachlor degradation was attributed to the complexing and reduction abilities of protocatechuic ligand, which could form stable complexes with ferric ions to prevent their precipitation and also accelerate the Fe(III)/Fe(II) cycle to enhance the ·OH generation. Meanwhile, the Fe(III)/PCA/H2O2 system could also work well at near natural pH even in the case of PCA concentration as low as 0.1 mmol/L. More importantly, both alachlor and PCA could be effectively mineralized in this Fenton system, suggesting the environmental benignity of PCA/Fe(III)/H2O2 Fenton system. We employed gas chromatography-mass spectrometry to identify the degradation intermediates of alachlor and then proposed a possible alachlor degradation mechanism in this novel Fenton oxidation system. This study provides an efficient way to remove chloroacetanilide herbicides, and also shed new insight into the possible roles of widely existed phenolic acids in the conversion and the mineralization of organic contaminants in natural aquatic environment.


Journal of Hazardous Materials | 2012

Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment.

Wei Liu; Zhihui Ai; Lizhi Zhang

In this work, we demonstrate a novel three-dimensional electro-Fenton system (3D-E-Fenton) for wastewater treatment with foam nickel, activated carbon fiber and Ti/RuO(2)-IrO(2) as the particle electrodes, the cathode, and the anode respectively. This 3D-E-Fenton system could exhibit much higher rhodamine B removal efficiency (99%) than the counterpart three-dimensional electrochemical system (33%) and E-Fenton system (19%) at neutral pH in 30 min. The degradation efficiency enhancement was attributed to much more hydroxyl radicals generated in the 3D-E-Fenton system because foam nickel particle electrodes could activate molecular oxygen to produce O(2)(-) via a single-electron transfer pathway to subsequently generate more H(2)O(2) and hydroxyl radicals. This is the first observation of molecular oxygen activation over the particle electrodes in the three-dimensional electrochemical system. These interesting findings could provide some new insight on the development of high efficient E-Fenton system for wastewater treatment at neutral pH.


Environmental Science & Technology | 2014

Dramatically Enhanced Aerobic Atrazine Degradation with Fe@Fe2O3 Core–Shell Nanowires by Tetrapolyphosphate

Li Wang; Menghua Cao; Zhihui Ai; Lizhi Zhang

In this study, the effects of an inorganic ligand tetrapolyphosphate on the molecular oxygen activation and the subsequent aerobic atrazine degradation by Fe@Fe2O3 core-shell nanowires were investigated systematically at a circumneutral to alkaline pH range (pH 6.0-9.0). We interestingly found that the addition of tetrapolyphosphate could enhance the aerobic atrazine degradation rate 955 times, which was even 10 times that of the traditional organic ligand ethylenediamine tetraacetate. This tetrapolyphosphate induced dramatic aerobic atrazine degradation enhancement could be attributed to two factors. One was that the presence of tetrapolyphosphate strongly suppressed hydrogen evolution from the reduction of proton by Fe@Fe2O3 core-shell nanowires through proton confinement, leaving over more electrons for the reduction of Fe(III) to Fe(II) and the subsequent molecular oxygen activation. The other was that the complexation of tetrapolyphosphate with ferrous ions not only guaranteed enough soluble Fe(II) for Fenton reaction, but also provided another route to produce more •OH in the solution via the single-electron molecular oxygen reduction pathway. We employed gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry to identify the atrazine degradation intermediates and proposed a possible aerobic atrazine degradation pathway. This study not only sheds light on the promotion effects of ligands on the molecular oxygen activation by nanoscale zerovalent iron, but also offers a facile and green iron-based method for the oxidative atrazine removal.


Angewandte Chemie | 2018

Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives

Hao Li; Jie Li; Zhihui Ai; Falong Jia; Lizhi Zhang

Semiconductor photocatalysis is a trustworthy approach to harvest clean solar light for energy conversions, while state-of-the-art catalytic efficiencies are unsatisfactory because of the finite light response and/or recombination of robust charge carriers. Along with the development of modern material characterization techniques and electronic-structure computations, oxygen vacancies (OVs) on the surface of real photocatalysts, even in infinitesimal concentration, are found to play a more decisive role in determining the kinetics, energetics, and mechanisms of photocatalytic reactions. This Review endeavors to clarify the inherent functionality of OVs in photocatalysis at the surface molecular level using 2D BiOCl as the platform. Structure sensitivity of OVs on reactivity and selectivity of photocatalytic reactions is intensely discussed via confining OVs onto prototypical BiOCl surfaces of different structures. The critical understanding of OVs chemistry can help consolidate and advance the fundamental theories of photocatalysis, and also offer new perspectives and guidelines for the rational design of catalysts with satisfactory performance.


Journal of Hazardous Materials | 2011

Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres

Xing Ding; Xiao Song; Pengna Li; Zhihui Ai; Lizhi Zhang

In this study, we demonstrate that aerosol assisted flow synthesized B, N-codoped TiO(2) photocatalyst possesses superior photocatalytic activity to pure and single element doped counterparts on the degradation of NO in a flow system under both simulated solar light and visible light irradiation. Characterization results revealed that B, N-codoped TiO(2) photocatalyst was composed of hollow microspheres. Boron and nitrogen were in the form of Ti-O-B and N-Ti-O structures, respectively. The introduction of B and N into the TiO(2) lattice could effectively tune the band gap of TiO(2) and extend its optical response to the visible-light region. The synergistic effect of B and N codoping on visible light driven photocatalytic activity enhancement of TiO(2) was discussed on the basis of experimental results.


ACS Applied Materials & Interfaces | 2015

Insight into Core-Shell Dependent Anoxic Cr(VI) Removal with Fe@Fe2O3 Nanowires: Indispensable Role of Surface Bound Fe(II)

Yi Mu; Zhihui Ai; Lizhi Zhang; Fahui Song

In this study, we investigated the anoxic Cr(VI) removal with core-shell Fe@Fe2O3 nanowires. It was found the surface area normalized Cr(VI) removal rate constants of Fe@Fe2O3 nanowires first increased with increasing the iron oxide shell thickness and then decreased, suggesting that Fe@Fe2O3 nanowires possessed an interesting core-shell structure dependent Cr(VI) removal property. Meanwhile, the Cr(VI) removal efficiency was positively correlated to the amount of surface bound Fe(II). This result revealed that the core-shell structure dependent Cr(VI) removal property of Fe@Fe2O3 nanowires was mainly attributed to the reduction of Cr(VI) by the surface bound Fe(II) besides the reduction of Cr(VI) adsorbed on the iron oxide shell via the electrons transferred from the iron core. The indispensable role of surface bound Fe(II) was confirmed by Tafel polarization and high-resolution X-ray photoelectron spectroscopic depth profiles analyses. X-ray diffraction patterns and scanning electron microscope images of the fresh and used Fe@Fe2O3 nanowires revealed the formation of Fe(III)/Cr(III)/Cr(VI) composite oxides during the anoxic Cr(VI) removal process. This study sheds a deep insight into the anoxic Cr(VI) removal mechanism of core-shell Fe@Fe2O3 nanowires and also provides an efficient Cr(VI) removal method.


Ultrasonics Sonochemistry | 2010

Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process

Zhihui Ai; Jinpo Li; Lizhi Zhang; S.C. Lee

In this study, we developed a novel ultrasound-assisted electrocatalytic oxidation (US-EO) process to decolorize azo dyes in aqueous solution. Rhodamine B was decolorized completely within several minutes in this developed US-EO system. Oxidation parameters such as applied potentials, power of the ultrasound, initial pH of the solution, and initial concentration of RhB were systematically studied and optimized. An obvious synergistic effect was found in decolorization of RhB by the US-EO process when comparing with either ultrasound (US) process or electrocatalytic oxidation (EO) one. Additionally, the decolorization of other azo dyes, such as methylene blue, reactive brilliant red X-3B, and methyl orange, were also effective in the US-EO system. The results indicated that US-EO system was effective for the decolorization of azo dyes, suggesting its great potential in dyeing wastewater treatment.


Environmental Science & Technology | 2015

Design of a Highly Efficient and Wide pH Electro-Fenton Oxidation System with Molecular Oxygen Activated by Ferrous–Tetrapolyphosphate Complex

Li Wang; Menghua Cao; Zhihui Ai; Lizhi Zhang

In this study, a novel electro-Fenton (EF) system was developed with iron wire, activated carbon fiber, and sodium tetrapolyphosphate (Na6TPP) as the anode, cathode, and electrolyte, respectively. This Na6TPP-EF system could efficiently degrade atrazine in a wide pH range of 4.0-10.2. The utilization of Na6TPP instead of Na2SO4 as the electrolyte enhanced the atrazine degradation rate by 130 times at an initial pH of 8.0. This dramatic enhancement was attributed to the formation of ferrous-tetrapolyphosphate (Fe(II)-TPP) complex from the electrochemical corrosion (ECC) and chemical corrosion (CC) of iron electrode in the presence of Na6TPP. The Fe(II)-TPP complex could provide an additional molecular oxygen activation pathway to produce more H2O2 and (•)OH via a series single-electron transfer processes, producing the Fe(III)-TPP complex. The cycle of Fe(II)/Fe(III) was easily realized through the electrochemical reduction (ECR) process on the cathode. More interestingly, we found that the presence of Na6TPP could prevent the iron electrode from excessive corrosion via phosphorization in the later stage of the Na6TPP-EF process, avoiding the generation of iron sludge. Gas chromatograph-mass spectrometry, liquid chromatography-mass spectrometry, and ion chromatography were used to investigate the degradation intermediates to propose a possible atrazine oxidation pathway in the Na6TPP-EF system. These interesting findings provide some new insight on the development of a low-cost and highly efficient EF system for wastewater treatment in a wide pH range.


Environmental science. Nano | 2017

Iron oxide shell mediated environmental remediation properties of nano zero-valent iron

Yi Mu; Falong Jia; Zhihui Ai; Lizhi Zhang

Nano zero-valent iron (nZVI) has attracted much more attention for its potential applications in the fields of environmental contaminant remediation and detoxification. Generally, nZVI consists of a zero-valent iron (Fe0) core and an iron oxide shell structure. As the underlying Fe0 core and the surface oxide shell determine the physical and chemical properties of nZVI, the nature of the oxide shell inevitably affects the organic/inorganic pollutant removal performance of nZVI, which has not been reviewed previously. In this article, we first introduce the synthesis and the oxide shell formation mechanism of core–shell structured nZVI and then discuss various characterization techniques to reveal the structure and chemical composition of the oxide shell. Subsequently, we clarify the roles of the oxide shell in the organic contaminant degradation efficiency and the molecular oxygen activation performance of nZVI and also highlight the effect of the oxide shell on heavy metal removal (including As) with nZVI. In addition, we summarize some oxide shell modification strategies to enhance the capacity and longevity of nZVI. Finally, we discuss the impacts of typical natural groundwater constituents (e.g. cations, anions, organic ligands, and dissolved oxygen) on the reactivity of nZVI and point out some unresolved issues related to the oxide shell dependent contaminant removal properties of nZVI.

Collaboration


Dive into the Zhihui Ai's collaboration.

Top Co-Authors

Avatar

Lizhi Zhang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Falong Jia

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

S.C. Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Hao Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Wingkei Ho

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Wenjuan Shen

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jinpo Li

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Hou

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yu Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge