Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihui Lai is active.

Publication


Featured researches published by Zhihui Lai.


IEEE Transactions on Systems, Man, and Cybernetics | 2014

Integrating Conventional and Inverse Representation for Face Recognition

Yong Xu; Xuelong Li; Jian Yang; Zhihui Lai; David Zhang

Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.


IEEE Transactions on Neural Networks | 2014

Multilinear Sparse Principal Component Analysis

Zhihui Lai; Yong Xu; Qingcai Chen; Jian Yang; David Zhang

In this brief, multilinear sparse principal component analysis (MSPCA) is proposed for feature extraction from the tensor data. MSPCA can be viewed as a further extension of the classical principal component analysis (PCA), sparse PCA (SPCA) and the recently proposed multilinear PCA (MPCA). The key operation of MSPCA is to rewrite the MPCA into multilinear regression forms and relax it for sparse regression. Differing from the recently proposed MPCA, MSPCA inherits the sparsity from the SPCA and iteratively learns a series of sparse projections that capture most of the variation of the tensor data. Each nonzero element in the sparse projections is selected from the most important variables/factors using the elastic net. Extensive experiments on Yale, Face Recognition Technology face databases, and COIL-20 object database encoded the object images as second-order tensors, and Weizmann action database as third-order tensors demonstrate that the proposed MSPCA algorithm has the potential to outperform the existing PCA-based subspace learning algorithms.


IEEE Transactions on Neural Networks | 2016

Approximate orthogonal sparse embedding for dimensionality reduction

Zhihui Lai; Wai Keung Wong; Yong Xu; Jian Yang; David Zhang

Locally linear embedding (LLE) is one of the most well-known manifold learning methods. As the representative linear extension of LLE, orthogonal neighborhood preserving projection (ONPP) has attracted widespread attention in the field of dimensionality reduction. In this paper, a unified sparse learning framework is proposed by introducing the sparsity or L1 -norm learning, which further extends the LLE-based methods to sparse cases. Theoretical connections between the ONPP and the proposed sparse linear embedding are discovered. The optimal sparse embeddings derived from the proposed framework can be computed by iterating the modified elastic net and singular value decomposition. We also show that the proposed model can be viewed as a general model for sparse linear and nonlinear (kernel) subspace learning. Based on this general model, sparse kernel embedding is also proposed for nonlinear sparse feature extraction. Extensive experiments on five databases demonstrate that the proposed sparse learning framework performs better than the existing subspace learning algorithm, particularly in the cases of small sample sizes.


IEEE Transactions on Image Processing | 2013

Sparse tensor discriminant analysis

Zhihui Lai; Yong Xu; Jian Yang; Jinhui Tang; David Zhang

The classical linear discriminant analysis has undergone great development and has recently been extended to different cases. In this paper, a novel discriminant subspace learning method called sparse tensor discriminant analysis (STDA) is proposed, which further extends the recently presented multilinear discriminant analysis to a sparse case. Through introducing the L1 and L2 norms into the objective function of STDA, we can obtain multiple interrelated sparse discriminant subspaces for feature extraction. As there are no closed-form solutions, k-mode optimization technique and the L1 norm sparse regression are combined to iteratively learn the optimal sparse discriminant subspace along different modes of the tensors. Moreover, each non-zero element in each subspace is selected from the most important variables/factors, and thus STDA has the potential to perform better than other discriminant subspace methods. Extensive experiments on face databases (Yale, FERET, and CMU PIE face databases) and the Weizmann action database show that the proposed STDA algorithm demonstrates the most competitive performance against the compared tensor-based methods, particularly in small sample sizes.


IEEE Transactions on Circuits and Systems for Video Technology | 2014

Human Gait Recognition via Sparse Discriminant Projection Learning

Zhihui Lai; Yong Xu; Zhong Jin; David Zhang

As an important biometric feature, human gait has great potential in video-surveillance-based applications. In this paper, we focus on the matrix representation-based human gait recognition and propose a novel discriminant subspace learning method called sparse bilinear discriminant analysis (SBDA). SBDA extends the recently proposed matrix-representation-based discriminant analysis methods to sparse cases. By introducing the L1 and L2 norms into the objective function of SBDA, two interrelated sparse discriminant subspaces can be obtained for gait feature extraction. Since the optimization problem has no closed-form solutions, an iterative method is designed to compute the optimal sparse subspace using the L1 and L2 norms sparse regression. Theoretical analyses reveal the close relationship between SBDA and previous matrix-representation-based discriminant analysis methods. Since each nonzero element in each subspace is selected from the most important variables/factors, SBDA is potential to perform equivalent to or even better than the state-of-the-art subspace learning methods in gait recognition. Moreover, using the strategy of SBDA plus linear discriminant analysis (LDA), we can further improve the performance. A set of experiments on the standard USF HumanID and CASIA gait databases demonstrate that the proposed SBDA and SBDA + LDA can obtain competitive performance.


IEEE Transactions on Neural Networks | 2012

Sparse Approximation to the Eigensubspace for Discrimination

Zhihui Lai; Wai Keung Wong; Zhong Jin; Jian Yang; Yong Xu

Two-dimensional (2-D) image-matrix-based projection methods for feature extraction are widely used in many fields of computer vision and pattern recognition. In this paper, we propose a novel framework called sparse 2-D projections (S2DP) for image feature extraction. Different from the existing 2-D feature extraction methods, S2DP iteratively learns the sparse projection matrix by using elastic net regression and singular value decomposition. Theoretical analysis shows that the optimal sparse subspace approximates the eigensubspace obtained by solving the corresponding generalized eigenequation. With the S2DP framework, many 2-D projection methods can be easily extended to sparse cases. Moreover, when each row/column of the image matrix is regarded as an independent high-dimensional vector (1-D vector), it is proven that the vector-based eigensubspace is also approximated by the sparse subspace obtained by the same method used in this paper. Theoretical analysis shows that, when compared with the vector-based sparse projection learning methods, S2DP greatly saves both computation and memory costs. This property makes S2DP more tractable for real-world applications. Experiments on well-known face databases indicate the competitive performance of the proposed S2DP over some 2-D projection methods when facial expressions, lighting conditions, and time vary.


IEEE Transactions on Neural Networks | 2014

Sparse alignment for robust tensor learning.

Zhihui Lai; Wai Keung Wong; Yong Xu; Cairong Zhao; Mingming Sun

Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.


IEEE Transactions on Image Processing | 2015

A Framework of Joint Graph Embedding and Sparse Regression for Dimensionality Reduction

Xiaoshuang Shi; Zhenhua Guo; Zhihui Lai; Yujiu Yang; Zhifeng Bao; David Zhang

Over the past few decades, a large number of algorithms have been developed for dimensionality reduction. Despite the different motivations of these algorithms, they can be interpreted by a common framework known as graph embedding. In order to explore the significant features of data, some sparse regression algorithms have been proposed based on graph embedding. However, the problem is that these algorithms include two separate steps: (1) embedding learning and (2) sparse regression. Thus their performance is largely determined by the effectiveness of the constructed graph. In this paper, we present a framework by combining the objective functions of graph embedding and sparse regression so that embedding learning and sparse regression can be jointly implemented and optimized, instead of simply using the graph spectral for sparse regression. By the proposed framework, supervised, semisupervised, and unsupervised learning algorithms could be unified. Furthermore, we analyze two situations of the optimization problem for the proposed framework. By adopting an ℓ2,1-norm regularization for the proposed framework, it can perform feature selection and subspace learning simultaneously. Experiments on seven standard databases demonstrate that joint graph embedding and sparse regression method can significantly improve the recognition performance and consistently outperform the sparse regression method.


IEEE Transactions on Systems, Man, and Cybernetics | 2015

Joint Tensor Feature Analysis For Visual Object Recognition

Wai Keung Wong; Zhihui Lai; Yong Xu; Jiajun Wen; Chu Po Ho

Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L2,1-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.


IEEE Transactions on Neural Networks | 2017

A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification

Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; David Zhang

Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.

Collaboration


Dive into the Zhihui Lai's collaboration.

Top Co-Authors

Avatar

Yong Xu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wai Keung Wong

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

David Zhang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Zhong Jin

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Yang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Xuelong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cairong Zhao

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiajun Wen

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Minghua Wan

Nanjing University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge