Zhihui Yin
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhihui Yin.
Journal of Applied Polymer Science | 1996
Xiaomin Zhang; Zhihui Yin; Lixia Li; Jinghua Yin
Ethylene-propylene copolymer (EP) was functionalized with glycidyl methacrylate (GMA) by means of a radical-initiated melt grafting reaction. FTIR and ESCA were used to characterize the formation of EP-g-GMA copolymers. The content of GMA in EP-g-GMA was determined by using hydrochloric acid/xylene titration. Effects of concentrations of GMA and dicumyl peroxide on grafting rate were studied. It was found that contact angles of the water on surfaces of EP-g-GMA samples increased with increasing content of GMA in EP-g-GMA. The influence of the content of GMA on the crystallization structure of EP-g-GMA was investigated by DSC and WAXD. Compared with the plain EP, the crystallization temperature of propylene blocks of EP-g-GMA increased over 10 K, and the melting temperature and crystallinity decreased somewhat. Functionalization of EP led to the change of the crystal form of propylene blocks from the mixed form of alpha and beta into the alpha form
Journal of Applied Polymer Science | 2000
Zhanhai Yao; Zhihui Yin; Guoen Sun; Chaozhong Liu; Jin Tong; Luquan Ren; Jinghua Yin
A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process
Journal of Applied Polymer Science | 1997
Xiaomin Zhang; Xing Lin Li; Dongmei Wang; Zhihui Yin; Jinghua Yin
The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process
Journal of Applied Polymer Science | 1996
Xiaomin Zhang; Zhihui Yin; Jinghua Yin
Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypropylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (eta(PP)/eta(PA)) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement :in the mechanical properties was found when nylon 1010 provided the matrix phase
Journal of Applied Polymer Science | 1997
Zhihui Yin; Yalie Zhang; Xiaomin Zhang; Jinghua Yin
The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene
Journal of Applied Polymer Science | 1999
Ge Gao; Jingyuan Wang; Jinghua Yin; Xiaoqiang Yu; Rongtang Ma; Xinyi Tang; Zhihui Yin; Xiaomin Zhang
Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend
International Journal of Polymeric Materials | 1997
Zhihui Yin; Yajie Zhang; Zhang Xiaomin; Jinghua Yin
Abstract Grafting of acrylamide tertiary butyl sulfonic acid (ATBS) onto polypropylene (precisely, ethylene/propylene random copolymer containing 8% ethylene content) was carried out by melt extruding with addition of dicumyl peroxide (DCP) as an initiator. The structure of graft copolymer was characterized by using WAXS, FT-IR, ESCA and DSC. Improved thermal stability was observed for graft copolymer. The effect of monomer and initiator concentration, reactive temperature and srew speed on degree of grafting efficiency of grafting has been investigated.
Journal of Applied Polymer Science | 1996
Xiaomin Zhang; Lixia Li; Zhihui Yin; Yuchen Qi; Jinghua Yin
The thermal properties of ethylene-propylene copolymer grafted with glycidyl methacrylate (EP-g-GMA) were investigated by using differential scanning calorimetry (DSC). Compared to the plain ethylene-propylene copolymer (EP), peak values of melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, crystallization temperature (T-c) increased about 8-12 degrees C, and melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal and nonisothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of ungrafted sample is 1.6-1.8, and those of grafted samples are all above 2. The crystallization rates of propylene sequence in EP-g-GMA were faster than that in the plain EP and increased with increasing of grafted monomer content. It might be attributed to the results of rapid nucleation rate
Journal of Applied Polymer Science | 1997
Zhihui Yin; Yajie Zhang; Xiaomin Zhang; Tianhai Na; Jinghua Yin
Grafting of acrylamido tertiary butyl sulfonic acid (ATBS) onto ethylene-polypropylene copolymer (EPM) was carried out by using a reactive processing method. The grafting copolymer was characterized by means of WAXD, FT-IR, ESCA, and DSC. Improved thermal stability was observed for graft copolymer. Effects of the monomer and the initiator concentrations, reactive temperature, and time on grafting degree were investigated
International Journal of Polymeric Materials | 1997
Zhihui Yin; Yajie Zhang; Xiaomin Zhang; Dongmei Wang; Jinghua Yin
Abstract The modification of polypropylene (more precisely, a propylene/ethylene random copolymer containing 10% ethylene) has been accomplished by melt grafting of acrylamide tertiary butyl sulfonic acid(ATBS) initiated with a radical initiator. The resulting PP-g-ATBS was used to prepare ternary blends of PA1O1O/PP-g-ATBS/PP and binary blends of PA1010/PP. The size of domains of PP in ternary blends is much smaller than that in binary blends. It was found that mechanical properties of ternary blends obviously surpassed that of binary blends. These behavior could be contributed to chemical interactions between sulfonic acid groups of PP-g-ATBS and end amino group of PA1010. Thermal and rheological analysis were performed to confirm the possible chemical reactions taken place during the blending process.