Zhijian Tan
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhijian Tan.
Bioprocess and Biosystems Engineering | 2013
Zhijian Tan; Fenfang Li; Xue-lei Xu
An alcohol/salt aqueous two-phase system (ATPS) composed of 1-propanol and (NH4)2SO4 was employed to purify anthraquinones (AQs) extracted from Aloe vera L. The main influencing system parameters such as type of alcohol, type and concentration of salt, temperature and pH were investigated in detail. Under the optimal extraction conditions, AQs can be extracted into alcohol-rich phase with high extraction efficiency, meanwhile majority polysaccharides, proteins, mineral substances and other impurities were extracted into salt-rich phase. Partitioning of AQs is dependent on hydrophobic interaction, hydrogen bond interaction, and salting-out effect in ATPS. Temperature also played a great role in the partitioning. After ATPS extraction, alcohol can be recycled by evaporation; moreover, salt can be recycled by dilution crystallization method. Compared with other liquid–liquid extractions, this alcohol/salt system is much simpler, lower in cost with easier recovery of phase-forming components, which has the potential scale-up in down-processing of active ingredients in plant.
Separation Science and Technology | 2011
Zhijian Tan; Fenfang Li; JianMin Xing
The anthraquinones were extracted from Curacao aloe leaves. Aqueous two-phase system (ATPS) of polyethylene glycol (PEG)/salt, coupled with spectrophotometry and high performance liquid chromatography (HPLC) were employed for the first time as an attractive alternative for the downstream processing of aloe anthraquinones, mainly for the removal of the impurities without additional steps. The influence factors such as molecular mass and concentration of PEG, type, and concentration of neutral salt, temperature, and pH on the phase partition behavior of ATPS had been studied. Under the optimal condition, the highest extraction yield 90.54% was obtained in PEG phase using PEG-6000/(NH4)2SO4 system to a mass ratio of 2:1 at 40°C, pH 3.0 with 0.6 g sodium chloride added. The reverse extraction of anthraquinones from the PEG phase was achieved with a recovery of 70.15% by adjusting the pH. Meanwhile, the PEG could be recycled. The major components in aloe anthraquinones of aloe-emodin and chrysophanol were analyzed by HPLC before and after ATPS extraction process. Compared with conventional purification methods, this technique can be completed in one operation; besides it is low-cost and environmentally friendly.
Molecules | 2015
Zhijian Tan; Chaoyun Wang; Zi-Zhen Yang; Yongjian Yi; Hongying Wang; Wanlai Zhou; Fenfang Li
In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.
Molecules | 2016
Zhijian Tan; Yongjian Yi; Hongying Wang; Wanlai Zhou; Chaoyun Wang
Background: Ionic liquids (ILs) are considered as green solvents, and widely applied for the extraction of various compounds. Methods: The present research focuses on the extraction of flavonoids from Apocynum venetum L. leaves by ultrasound-assisted extraction (UAE). Several major influencing factors were optimized. Then, an aqueous biphasic system (ABS) was applied for further isolation of flavonoids. Results: The flavonoids were mainly distributed in the top phase, while impurities were extracted to the bottom phase. The parameters influencing the extraction, namely type and concentration of salt, temperature, and pH, were studied in detail. Under optimized conditions (72.43% IL extract, 28.57% (NH4)2SO4, 25 °C temperature, pH 4.5), the preconcentration factor and extraction efficiency were found to be 3.78% and 93.35%, respectively. Conclusions: This simple and efficient methodology is expected to see great use in the extraction and isolation of pharmaceutically active components from medicinal plant resources.
Food Chemistry | 2017
Fenfang Li; Qiao Li; Shuanggen Wu; Zhijian Tan
Salting-out extraction (SOE) based on lower molecular organic solvent and inorganic salt was considered as a good substitute for conventional polymers aqueous two-phase extraction (ATPE) used for the extraction of some bioactive compounds from natural plants resources. In this study, the ethanol/ammonium sulfate was screened as the optimal SOE system for the extraction and preliminary purification of allicin from garlic. Response surface methodology (RSM) was developed to optimize the major conditions. The maximum extraction efficiency of 94.17% was obtained at the optimized conditions for routine use: 23% (w/w) ethanol concentration and 24% (w/w) salt concentration, 31g/L loaded sample at 25°C with pH being not adjusted. The extraction efficiency had no obvious decrease after amplification of the extraction. This ethanol/ammonium sulfate SOE is much simpler, cheaper, and effective, which has the potentiality of scale-up production for the extraction and purification of other compounds from plant resources.
Natural Product Research | 2012
Zhijian Tan; Fen-Fang Li; Jian-Min Xing
Non-ionic surfactant-based aqueous two-phase system had been investigated to extract aloe anthraquinones. It had the advantage of using a single auxiliary chemical to induce phase separation above cloud point at a low concentration. Non-ionic surfactant Triton X-114 was chosen for its excellent phase-separating ability and low cloud point. The main factors affecting the cloud point extraction were discussed such as equilibrium temperature and time, concentrations of surfactant and inorganic electrolytes, pH, etc. Under the optimised conditions, the highest extraction yield 96.93% was obtained. The reverse extraction of anthraquinones from surfactant-rich phase was achieved with a recovery of 70.35% by adjusting pH. Compared with conventional purification methods, this CPE technique can be completed in one operation; besides, it is a low-cost method and an environment friendly one.
Molecules | 2017
Zhijian Tan; Qiao Li; Chaoyun Wang; Wanlai Zhou; Yuanru Yang; Hongying Wang; Yongjian Yi; Fenfang Li
(1) Background: Ionic liquids (ILs) are considered “green” solvents and have been widely used in the extraction and separation field in recent years; (2) Methods: In this study, some common ILs and functionalized magnetic ionic liquids (MILs) were used as adjuvants for the solvent extraction of paclitaxel from Taxus x media (T. x media) using methanol solution. The extraction conditions of methanol concentration, IL type and amount, solid–liquid ratio, extraction temperature, and ultrasonic irradiation time were investigated in single factor experiments. Then, three factors of IL amount, solid–liquid ratio, and ultrasonic irradiation time were optimized by response surface methodology (RSM); (3) Results: The MIL [C4MIM]FeCl3Br was screened as the optimal adjuvant. Under the optimization conditions of 1.2% IL amount, 1:10.5 solid–liquid ratio, and 30 min ultrasonic irradiation time, the extraction yield reached 0.224 mg/g; and (4) Conclusions: Compared with the conventional solvent extraction, this ultrasonic assisted extraction (UAE) using methanol and MIL as adjuvants can significantly improve the extraction yield, reduce the use of methanol, and shorten the extraction time, which has the potentiality of being used in the extraction of some other important bioactive compounds from natural plant resources.
Journal of Hazardous Materials | 2018
Shuanggen Wu; Liangbin Zeng; Chaoyun Wang; Yuanru Yang; Wanlai Zhou; Fenfang Li; Zhijian Tan
Cytotoxicity studies are important tools for the assessment of the toxicity of ionic liquids (ILs). In the present study, the cytotoxicity of eleven ILs against Spodoptera frugiperda 9 (Sf-9) cell lines were evaluated via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The effect on cellular morphology, ultrastructural morphology, and nuclear morphology induced by 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]) was studied via inverted light microscopy observation, acridine orange staining, and transmission electron microscope (TEM) analysis, respectively. The effect on cell DNA fragmentation, cell apoptosis and cell cycle induced by [C2mim][Br] was also investigated via DNA agarose gel electrophoresis and flow cytometry analysis, respectively. The results showed that the cytotoxic effect of ILs on Sf-9 cells was related to the IL structures, concentrations, and length of exposure. The morphological features of apoptosis induced by [C2mim][Br] such as cell shrinkage and convolution, apoptotic bodies, pyknosis, and karyorrhesis were observed. All these phenomena confirmed that Sf-9 cells exposed to [C2mim][Br] died via apoptosis. This study complements the current knowledge about the cytotoxic properties of ILs on insect cells and highlights the mechanism by which ILs kill these cells. Furthermore, it provides a basis for further studies on the future applications of ILs as insecticides.
Separation and Purification Technology | 2012
Zhijian Tan; Fenfang Li; Xue-lei Xu
Desalination | 2012
Zhijian Tan; Fenfang Li; Xue-lei Xu; JianMin Xing