Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhimin Du is active.

Publication


Featured researches published by Zhimin Du.


British Journal of Pharmacology | 2008

Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo

Xuyun Zhao; Li Gy; Ying Liu; Chai Lm; Chen Jx; Yan‐Qiu Zhang; Zhimin Du; Yanjie Lu; Baofeng Yang

Background and purpose: The clinical use of arsenic trioxide (As2O3), a potent antineoplastic agent, is limited by its severe cardiotoxic effects. QT interval prolongation and apoptosis have been implicated in the cardiotoxicity of As2O3. The present study was designed to evaluate the effects of resveratrol on As2O3‐induced apoptosis and cardiac injury.


Molecular Therapy | 2014

The Antifibrotic Effects and Mechanisms of MicroRNA-26a Action in Idiopathic Pulmonary Fibrosis

Haihai Liang; Chaoqian Xu; Zhenwei Pan; Ying Zhang; Zhidan Xu; Yingzhun Chen; Tianyu Li; Xuelian Li; Ying Liu; Longtao Huangfu; Ying Lu; Zhihua Zhang; Baofeng Yang; Samuel Chege Gitau; Yanjie Lu; Hongli Shan; Zhimin Du

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high-lethality fibrotic lung disease characterized by excessive fibroblast proliferation, extracellular matrix accumulation, and, ultimately, loss of lung function. Although dysregulation of some microRNAs (miRs) has been shown to play important roles in the pathophysiological processes of IPF, the role of miRs in fibrotic lung diseases is not well understood. In this study, we found downregulation of miR-26a in the lungs of mice with experimental pulmonary fibrosis and in IPF, which resulted in posttranscriptional derepression of connective tissue growth factor (CTGF), and induced collagen production. More importantly, inhibition of miR-26a in the lungs caused pulmonary fibrosis in vivo, whereas overexpression of miR-26a repressed transforming growth factor (TGF)-β1-induced fibrogenesis in MRC-5 cells and attenuated experimental pulmonary fibrosis in mice. Our study showed that miR-26a was downregulated by TGF-β1-mediated phosphorylation of Smad3. Moreover, miR-26a inhibited the nuclear translocation of p-Smad3 through directly targeting Smad4, which determines the nuclear translocation of p-Smad2/Smad3. Taken together, our experiments demonstrated the antifibrotic effects of miR-26a in fibrotic lung diseases and suggested a new strategy for the prevention and treatment of IPF using miR-26a. The current study also uncovered a novel positive feedback loop between miR-26a and p-Smad3, which is involved in pulmonary fibrosis.


Scientific Reports | 2015

MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis

Yong Zhang; Wei Qin; Longyin Zhang; Xianxian Wu; Ning Du; Yingying Hu; Xiaoguang Li; Nannan Shen; Dan Xiao; Haiying Zhang; Zhange Li; Yue Zhang; Huan Yang; Feng Gao; Zhimin Du; Chaoqian Xu; Baofeng Yang

Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial apoptosis plays a vital role in the initiation and progression of atherosclerotic lesions. Although a subset of microRNAs (miRs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In our study, we found that miR-26a expression was substantially reduced in the aortic intima of ApoE−/− mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein (ox-LDL) suppressed miR-26a expression. Forced expression of miR-26a inhibited endothelial apoptosis as evidenced by MTT assay and TUNEL staining results. Further analysis identified TRPC6 as a target of miR-26a, and TRPC6 overexpression abolished the anti-apoptotic effect of miR-26a. Moreover, the cytosolic calcium and the mitochondrial apoptotic pathway were found to mediate the beneficial effects of miR-26a on endothelial apoptosis. Taken together, our study reveals a novel role of miR-26a in endothelial apoptosis and indicates a therapeutic potential of miR-26a for atherosclerosis associated with apoptotic cell death.


International Journal of Cardiology | 2013

Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling.

Hongli Shan; Yong Zhang; Benzhi Cai; Xi Chen; Yuhua Fan; Lili Yang; Xichuang Chen; Haihai Liang; Ying Zhang; Xiaohui Song; Chaoqian Xu; Yanjie Lu; Baofeng Yang; Zhimin Du

BACKGROUND A large body of evidence showed that arsenic trioxide (As2O3), a front-line drug for the treatment of acute promyelocytic leukemia, induced abnormal cardiac QT prolongation, which hampers its clinical use. The molecular mechanisms for this cardiotoxicity remained unclear. This study aimed to elucidate whether microRNAs (miRs) participate in As2O3-induced QT prolongation. METHODS A guinea pig model of As2O3-induced QT prolongation was established by intravenous injection with As2O3. Real-time PCR and Western blot were employed to determine the expression alterations of miRs and mRNAs, and their corresponding proteins. RESULTS The QT interval and QRS complex were significantly prolonged in a dose-dependent fashion after 7-day administration of As2O3. As2O3 induced a significant upregulation of the muscle-specific miR-1 and miR-133, as well as their transactivator serum response factor. As2O3 depressed the protein levels of ether-a-go-go related gene (ERG) and Kir2.1, the K(+) channel subunits responsible for delayed rectifier K(+) current IKr and inward rectifier K(+) current IK1, respectively. In vivo transfer of miR-133 by direct intramuscular injection prolonged QTc interval and increased mortality rate, along with depression of ERG protein and IKr in guinea pig hearts. Similarly, forced expression of miR-1 widened QTc interval and QRS complex and increased mortality rate, accompanied by downregulation of Kir2.1 protein and IK1. Application of antisense inhibitors to knockdown miR-1 and miR-133 abolished the cardiac electrical disorders caused by As2O3. CONCLUSIONS Deregulation of miR-133 and miR-1 underlies As2O3-induced cardiac electrical disorders and these miRs may serve as potential therapeutic targets for the handling of As2O3 cardiotoxicity.


Cardiovascular Research | 2012

Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome.

Wenfeng Chu; Cui Li; Xuefeng Qu; Dan Zhao; Xuelian Wang; Xiangru Yu; Fulai Cai; Haihai Liang; Yong Zhang; Xin Zhao; Baoxin Li; Guo-Fen Qiao; De-Li Dong; Yanjie Lu; Zhimin Du; Baofeng Yang

AIMS Arsenic trioxide (ATO), an effective therapeutic agent for acute promyelocytic leukaemia, can cause sudden cardiac death due to long QT syndrome (LQTS). The present study was designed to determine whether ATO could induce cardiac fibrosis and explore whether cardiac fibroblasts (CFs) are involved in the development of LQTS by ATO. METHODS AND RESULTS ATO treatment of guinea pigs caused substantial interstitial myocardial fibrosis and LQTS, which was accompanied by an increase in transforming growth factor β1(TGF-β1) secretion and a decrease in ether-à-go-go-related gene (HERG) and inward rectifying potassium channel (I(K1)) subunit Kir2.1 protein levels. ATO promoted collagen production and TGF-β1 expression and secretion in cultured CFs. Whole-cell patch clamp and western blotting showed that treatment with TGF-β1 markedly reduced HERG and I(K1) current densities and downregulated HERG and Kir2.1 protein expression in HEK293 cells stably transfected with the human recombinant HERG channel and in cardiomyocytes (CMs). These changes were completely reversed by treatment with the protein kinase A (PKA) antagonist, H89. CM and CF co-cultures showed that ATO significantly increased TGF-β1 levels in the culture medium, whereas markedly reduced HERG and Kir2.1 protein levels were observed in CMs compared with ATO-treated CMs not co-cultured with CFs. Finally, in vivo administration of LY364947, a pharmacological antagonist of TGF-β signalling, dramatically prevented interstitial fibrosis and LQTS and abolished aberrant expression of TGF-β1, HERG, and Kir2.1 in ATO-treated guinea pigs. CONCLUSION ATO-induced TGF-β1 secretion from CFs aggravates QT prolongation, suggesting that modulation of TGF-β signalling may provide a novel strategy for the treatment of drug-induced LQTS.


Molecular therapy. Nucleic acids | 2016

Combination of microRNA-21 and microRNA-146a Attenuates Cardiac Dysfunction and Apoptosis During Acute Myocardial Infarction in Mice

Wei Huang; Shanshan Tian; Pengzhou Hang; Chuan Sun; Jing Guo; Zhimin Du

Recent studies have revealed the cytoprotective roles of microRNAs (miRNAs) miR-21 and miR-146a against ischemic cardiac injuries. While these studies investigated each of these miRNAs as an independent individual factor, our previous study has suggested the possible interaction between these two miRNAs. The present study was designed to investigate this possibility by evaluating the effects of miR-21 and miR-146a combination on cardiac ischemic injuries and the underlying mechanisms. MiR-21 and miR-146a synergistically decreased apoptosis under ischemia/hypoxic conditions in cardiomyocytes compared with either miR-21 or miR-146a alone. Mice coinjected with agomiR-21 and agomiR-146a had decreased infarct size, increased ejection fraction (EF), and fractional shortening (FS). These effects were greater than those induced by either of the two agomiRs. Furthermore, greater decreases in p38 mitogen-associated protein kinase phosphorylation (p-p38 MAPK) were observed with miR-21: miR-146a combination as compared to application of either of the miRNAs. These data suggest that combination of miR-21 and miR-146a has a greater protective effect against cardiac ischemia/hypoxia-induced apoptosis as compared to these miRNAs applied individually. This synergistic action is mediated by enhanced potency of inhibition of cardiomyocyte apoptosis by the miR-21—PTEN/AKT—p-p38—caspase-3 and miR-146a—TRAF6—p-p38—caspase-3 signal pathways.


International Journal of Biological Sciences | 2013

Overexpression of microRNA-1 Causes Atrioventricular Block in Rodents

Yong Zhang; Lihua Sun; Yan Zhang; Haihai Liang; Xuelian Li; Ruijun Cai; Lu Wang; Weijie Du; Ruixue Zhang; Jing Li; Zhiguo Wang; Ning Ma; Xidi Wang; Zhimin Du; Baofeng Yang; Xu Gao; Hongli Shan

The present study was designed to investigate whether microRNAs (miRNAs) are involved in atrioventricular block (AVB) in the setting of myocardial ischemia (MI). A cardiac-specific miR-1 transgenic (Tg) mouse model was successfully established for the first time in this study using microinjection. miR-1 level was measured by real-time qRT-PCR. Whole-cell patch clamp was employed to record L-type calcium current (ICa,L) and inward rectifier K+ current (IK1). Expression of connexin 43 (Cx43) protein was determined by western blot analysis. Alternations of [Ca2+]i was detected by laser scanning confocal microscopy in ventricular myocytes. The incidence of AVB was higher in miR-1 Tg mice than that in wild-type (WT) mice. The normalized peak current amplitude of ICa,L was lower in ventricular myocytes from miR-1 Tg mice as compared with WT mice. Similarly, the current density of IK1 was decreased in miR-1 Tg mice than that in WT mice. Compared with WT mice, miR-1 Tg mice exhibited a significant decrease of the systolic [Ca2+]i in ventricular myocytes but a prominent increase of the resting [Ca2+]i. Moreover, Cx43 protein was downregulated in miR-1 Tg mice compared to that in WT mice. Administration of LNA-modified antimiR-1 reversed all the above changes. miR-1 overexpression may contribute to the increased susceptibility of the heart to AVB, which provides us novel insights into the molecular mechanisms underlying ischemic cardiac arrhythmias.


Scientific Reports | 2016

Reciprocal Changes of Circulating Long Non-Coding RNAs ZFAS1 and CDR1AS Predict Acute Myocardial Infarction

Ying Zhang; Lihua Sun; Lina Xuan; Zhenwei Pan; Kang Li; Shuangshuang Liu; Yuechao Huang; Xuyun Zhao; Lihua Huang; Zhiguo Wang; Yan Hou; Junnan Li; Ye Tian; Jiahui Yu; Hui Han; Yanhong Liu; Fei Gao; Yong Zhang; Shu Wang; Zhimin Du; Yanjie Lu; Baofeng Yang

This study sought to evaluate the potential of circulating long non-coding RNAs (lncRNAs) as biomarkers for acute myocardial infarction (AMI). We measured the circulating levels of 15 individual lncRNAs, known to be relevant to cardiovascular disease, using the whole blood samples collected from 103 AMI patients, 149 non-AMI subjects, and 95 healthy volunteers. We found that only two of them, Zinc finger antisense 1 (ZFAS1) and Cdr1 antisense (CDR1AS), showed significant differential expression between AMI patients and control subjects. Circulating level of ZFAS1 was significantly lower in AMI (0.74 ± 0.07) than in non-AMI subjects (1.0 ± 0.05, P < 0.0001), whereas CDR1AS showed the opposite changes with its blood level markedly higher in AMI (2.18 ± 0.24) than in non-AMI subjects (1.0 ± 0.05, P < 0.0001). When comparison was made between AMI and non-AMI, the area under ROC curve was 0.664 for ZFAS1 alone or 0.671 for CDR1AS alone, and 0.691 for ZFAS1 and CDR1AS combination. Univariate and multivariate analyses identified these two lncRNAs as independent predictors for AMI. Similar changes of circulating ZFAS1 and CDR1AS were consistently observed in an AMI mouse model. Reciprocal changes of circulating ZFAS1 and CDR1AS independently predict AMI and may be considered novel biomarkers of AMI.


Journal of Cellular and Molecular Medicine | 2017

Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure

Lina Xuan; Lihua Sun; Ying Zhang; Yuechao Huang; Yan Hou; Qingqi Li; Ying Guo; Bingbing Feng; Lina Cui; Xiaoxue Wang; Zhiguo Wang; Ye Tian; Bo Yu; Shu Wang; Chaoqian Xu; Mingyu Zhang; Zhimin Du; Yanjie Lu; Bao Feng Yang

This study sought to evaluate the potential of circulating long non‐coding RNAs (lncRNAs) as biomarkers for heart failure (HF). We measured the circulating levels of 13 individual lncRNAs which are known to be relevant to cardiovascular disease in the plasma samples from 72 HF patients and 60 non‐HF control participants using real‐time reverse transcription‐polymerase chain reaction (real‐time RT‐PCR) methods. We found that out of the 13 lncRNAs tested, non‐coding repressor of NFAT (NRON) and myosin heavy‐chain‐associated RNA transcripts (MHRT) had significantly higher plasma levels in HF than in non‐HF subjects: 3.17 ± 0.30 versus 1.0 ± 0.07 for NRON (P < 0.0001) and 1.66 ± 0.14 versus 1.0 ± 0.12 for MHRT (P < 0.0001). The area under the ROC curve was 0.865 for NRON and 0.702 for MHRT. Univariate and multivariate analyses identified NRON and MHRT as independent predictors for HF. Spearmans rank correlation analysis showed that NRON was negatively correlated with HDL and positively correlated with LDH, whereas MHRT was positively correlated with AST and LDH. Hence, elevation of circulating NRON and MHRT predicts HF and may be considered as novel biomarkers of HF.


Scientific Reports | 2016

Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways

Yang Zhang; Jinghao Wang; Yiyuan Zhang; Ying-Zhe Wang; Jin Wang; Yue Zhao; Xue-Xin Jin; Gen-Long Xue; Peng-Hui Li; Yi-Lin Sun; Qi-He Huang; Xiao-Tong Song; Zhiren Zhang; Xu Gao; Baofeng Yang; Zhimin Du; Zhenwei Pan

Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.

Collaboration


Dive into the Zhimin Du's collaboration.

Top Co-Authors

Avatar

Baofeng Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanjie Lu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chaoqian Xu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Pengzhou Hang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongli Shan

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhenwei Pan

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Chuan Sun

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Haihai Liang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Guo

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge