Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhimin Tao is active.

Publication


Featured researches published by Zhimin Tao.


ACS Nano | 2010

Mesoporous Silica Microparticles Enhance the Cytotoxicity of Anticancer Platinum Drugs

Zhimin Tao; Bonnie B. Toms; Jerry Goodisman; Tewodros Asefa

We report on the endocytosis and the time-dependent enhanced cytotoxicity of anticancer platinum drugs when the drugs are combined with (or loaded into) one of the two most common types of mesoporous silica materials, MCM-41 or SBA-15. The anticancer drug cisplatin and its isomer transplatin, when loaded on MCM-41 and SBA-15 microparticles, were less cytotoxic to leukemia cells than the drugs alone after 12 h exposure. However, the drug-loaded microparticles exhibited unprecedented enhanced cytotoxicity to the cancerous cells after 24 h of exposure. This cytotoxicity of the drug-loaded microparticles was even higher than of the pure drugs in solutions, suggesting that mesoporous silica microparticles loaded with cisplatin or transplatin enabled a localized intracellular release of the platinum compounds and possibly also facilitated the drugs hydrolysis, enhancing the desired cytotoxic effect.


Nano Letters | 2008

Mesoporous Silica Nanoparticles Inhibit Cellular Respiration

Zhimin Tao; Matthew P. Morrow; Tewodros Asefa; Krishna K. Sharma; Cole T. Duncan; Abhishek Anan; Harvey S. Penefsky; Jerry Goodisman; Abdul-Kader Souid

We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.


Langmuir | 2010

Isomer-Dependent Adsorption and Release of Cis- and Trans-platin Anticancer Drugs by Mesoporous Silica Nanoparticles

Zhimin Tao; Youwei Xie; Jerry Goodisman; Tewodros Asefa

We report on adsorption and release of the anticancer drugs cisplatin and transplatin from mesoporous silica nanomaterials, emphasizing the differences between cisplatin and its much less toxic isomer. Two types of particles, MCM-41 and SBA-15, were used, either as just synthesized or after calcination to remove the templates. The particles were characterized by TEM, nitrogen physisorption, and elemental analysis. The UV-vis spectra of cisplatin and transplatin were obtained and the intensities of several bands (205-210 nm, 210-220 nm, 220-235 nm, and 300-330 nm) were found proportional to drug concentrations, allowing their use for measuring drug concentration. To evaluate drug adsorption by nanoparticles, nanoparticles were incubated in drug solutions and removed by centrifugation, after which the supernatants were scanned by spectrometer to determine drug remaining. It was found that calcined MCM adsorbed less cisplatin or transplatin per particle than as-synthesized MCM. SBA nanoparticles adsorbed slightly more cisplatin than MCM, and slightly less transplatin. Measurements of drug adsorption as a function of time show that drug is rapidly adsorbed by all particles studied. This rapid adsorption is probably associated with adsorption of drug on the external surfaces of the particles as well as the possible physisorption within the surfactant assemblies or by replacing the surfactant molecules or ions in the case of the as-synthesized materials. For calcined SBA particles, it is followed by a slow take-up of drug, perhaps due to the internal pores. There is no slow take-up by as-synthesized SBA particles or by either as-synthesized or calcined MCM particles. Measurement of the release of platinum drugs from nanoparticles previously soaked in drug solutions showed a substantial quick release for all particles and both drugs. This was followed by a slow release of Pt species in the case of transplatin in calcined SBA.


Langmuir | 2009

Accelerated oxidation of epinephrine by silica nanoparticles

Zhimin Tao; Gang Wang; Jerry Goodisman; Tewodros Asefa

We have measured the influence of mesoporous silica (MCM-41 and SBA-15) nanoparticles and dense silica nanoparticles on epinephrine oxidation, a pH-dependent reaction, whose rate is small in acidic or neutral solutions but much greater at higher pH. The reaction was measured by monitoring adrenochrome at 480 nm, the product of epinephrine oxidation. In distilled water (dH(2)O) with no particles present, the oxidation of epinephrine occurs slowly but more rapidly at higher pH. The presence of MCM-41 or silica spheres does not accelerate the oxidation, but SBA-15 does, showing that the difference in the structures of nanomaterials leads to differing effects on the epinephrine oxidative process. In phosphate buffered saline (PBS, pH = 7.4), epinephrine undergoes a much quicker oxidation, and, in this case, the presence of SBA-15 and MCM-41 makes it even more rapid. Silica spheres have no noticeable influence on the oxidation in PBS or in dH(2)O. The possibility that the catalytic effect of mesoporous silica nanoparticles (MSN) could result from the residue of templating chemicals, however, can be excluded due to the postsynthesis calcinations. Experiments with dithionite, added either earlier than or at the same time as the epinephrine addition, show that fast oxidation takes place only when dithionite and epinephrine are simultaneously added into PBS solution. This confirms a vital role of oxygen radicals (probably *O(2)(-)) in the oxidation of epinephrine. These oxygen radicals are likely to form and accumulate within the phosphate buffer or in the presence of MSN. Comparing the three kinds of silica nanoparticles applied, we note that mesoporous SBA-15 and MCM-41 materials own much larger surface area than solid silica particles do, whereas MCM-41 possesses a much narrower pore size (0.4-fold) than SBA-15. It seems, therefore, that large surface area, characteristic mesoporosity, and surface structures aid in the deposit of oxygen radicals inside MSN particles, which catalyze the epinephrine oxidation in a favorable phosphate environment.


Biophysical Journal | 2009

Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

Zhimin Tao; Ryan Raffel; Abdul-Kader Souid; Jerry Goodisman

The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 +/- 0.7) x 10(4) M(-1) s(-1) at 37 degrees C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37 degrees C and well above unity at 25 degrees C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s(-1) and 0.090 s(-1) respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain.


Journal of Physical Chemistry A | 2008

Oxygen Measurement via Phosphorescence: Reaction of Sodium Dithionite with Dissolved Oxygen

Zhimin Tao; Jerry Goodisman; Abdul-Kader Souid

A homemade instrument for the measurement of oxygen concentration in aqueous solutions measures the decay rate of the phosphorescence of a Pd-porphyrin complex (phosphor) dissolved in the solution, which is flashed every 0.1 s with 630 nm light. The concentration of O2 is a linear function of the decay rate. The instrument is used to study the reaction of dithionite (S2O42-) with O2 at 25 degrees C and 37 degrees C. It is found that the ratio of dithionite to oxygen consumed in the reaction is 1.2 +/- 0.2 at 25 degrees C and 1.7 +/- 0.1 at 37 degrees C, suggesting a temperature-dependent stoichiometry. At both temperatures, the initial rate of O2 consumption, -d[O2]/dt, is found to be 1/2 order in S2O42- and first order in O2. This finding is consistent with a previously proposed mechanism: S2O42- <--> 2SO2- comes to a rapid equilibrium, and SO2- reacts with O2 in the rate-determining step.


Analytical Biochemistry | 2008

Quantitative measure of cytotoxicity of anticancer drugs and other agents.

Zhimin Tao; Eyone Jones; Jerry Goodisman; Abdul-Kader Souid

Many anticancer drugs act on cancer cells to promote apoptosis, which includes impairment of cellular respiration (mitochondrial O(2) consumption). Other agents also inhibit cellular respiration, sometimes irreversibly. To investigate the sensitivity of cancer cells to cytotoxins, including anticancer drugs, we compare the profiles of cellular O(2) consumption in the absence and presence of these agents. Oxygen measurements are made at 37 degrees C, using glucose as a substrate, with [O(2)] obtained from the phosphorescence decay rate of a palladium phosphor. The rate of respiration k is defined as -d[O(2)]/dt in a sealed container. Different toxins produce different profiles of impaired respiration, implying different mechanisms for the drug-induced mitochondrial dysfunction. The decrease in the average value of k over a fixed time period, I, is proposed as a characteristic value to assess mitochondrial injury. The value of I depends on the nature of the toxin, its concentration, and the exposure time as well as on the cell type. Results for several cell types and 10 cytotoxins are presented here.


RSC Advances | 2016

Improving the dissolution of fenofibrate with yeast cell-derived hollow core/shell carbon microparticles

Xiaoxi Huang; Tao Zhang; Xiaoxin Zou; Zhimin Tao; Tewodros Asefa

Hollow core/shell carbon microparticles, denoted HCSC600, are synthesized from yeast cells by coating the cells with silica shells, and then pyrolyzing the silica-protected yeast cells at 600 °C, and finally etching the silica shells off of the carbonized products. The microparticles possess a yolk/shell structure with very large interior hollow spaces and interconnected porous structures—structural features that are generally useful for adsorption and release of drug molecules. The microparticles are characterized by various methods, including scanning electron microscopy, transmission electron microscopy, nitrogen gas adsorption/desorption and X-ray photoelectron spectroscopy. Their adsorption properties are evaluated by using rhodamine B (RhB) as a model drug and the poorly soluble drug fenofibrate (FFB), a prodrug of fenofibric acid, which is widely used to treat hypertriglyceridemia. Compared with the control material prepared from yeast cells without silica coating (named YCC600), the HCSC microparticles showed much higher adsorption capacity for both compounds, suggesting that the silica coating is important not only for controlling the morphology of the particles but also for giving them high surface area. Furthermore, it is found that the HCSC600 material loaded with FFB allows the drug molecules to be released faster and better than they are from the bulk drug. The results indicate that HCSC microparticles have great potential to serve as drug delivery vehicles, especially for poorly bioavailable drugs such as FFB, for biomedical applications.


Chemical Research in Toxicology | 2012

Biocompatibility of Mesoporous Silica Nanoparticles

Tewodros Asefa; Zhimin Tao


Journal of Solid State Chemistry | 2009

Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

Gang Wang; Amy N. Otuonye; Elizabeth A. Blair; Kelley Denton; Zhimin Tao; Tewodros Asefa

Collaboration


Dive into the Zhimin Tao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul-Kader Souid

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Harvey S. Penefsky

Public Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonnie B. Toms

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew P. Morrow

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge