Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiquan Shu is active.

Publication


Featured researches published by Zhiquan Shu.


Bone Marrow Transplantation | 2014

Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion

Zhiquan Shu; Shelly Heimfeld; Dayong Gao

Transplantation of hematopoietic stem cells (HSCs) has been successfully developed as a part of treatment protocols for a large number of clinical indications, and cryopreservation of both autologous and allogeneic sources of HSC grafts is increasingly being used to facilitate logistical challenges in coordinating the collection, processing, preparation, quality control testing and release of the final HSC product with delivery to the patient. Direct infusion of cryopreserved cell products into patients has been associated with the development of adverse reactions, ranging from relatively mild symptoms to much more serious, life-threatening complications, including allergic/gastrointestinal/cardiovascular/neurological complications, renal/hepatic dysfunctions, and so on. In many cases, the cryoprotective agent (CPA) used—which is typically dimethyl sulfoxide (DMSO)—is believed to be the main causal agent of these adverse reactions and thus many studies recommend depletion of DMSO before cell infusion. In this paper, we will briefly review the history of HSC cryopreservation, the side effects reported after transplantation, along with advances in strategies for reducing the adverse reactions, including methods and devices for removal of DMSO. Strategies to minimize adverse effects include medication before and after transplantation, optimizing the infusion procedure, reducing the DMSO concentration or using alternative CPAs for cryopreservation and removing DMSO before infusion. For DMSO removal, besides the traditional and widely applied method of centrifugation, new approaches have been explored in the past decade, such as filtration by spinning membrane, stepwise dilution-centrifugation using rotating syringe, diffusion-based DMSO extraction in microfluidic channels, dialysis and dilution-filtration through hollow-fiber dialyzers and some instruments (CytoMate, Sepax S-100, Cobe 2991, microfluidic channels, dilution-filtration system, etc.) as well. However, challenges still remain: development of the optimal (fast, safe, simple, automated, controllable, effective and low cost) methods and devices for CPA removal with minimum cell loss and damage remains an unfilled need.


Lab on a Chip | 2012

Immunosensor towards low-cost, rapid diagnosis of tuberculosis

Jong Hoon Kim; Woon Hong Yeo; Zhiquan Shu; Scott D. Soelberg; Shinnosuke Inoue; Dinesh Kalyanasundaram; John Ludwig; Clement E. Furlong; James J. Riley; Kris M. Weigel; Gerard A. Cangelosi; Kieseok Oh; Kyong Hoon Lee; Dayong Gao; Jae Hyun Chung

A rapid, accurate tuberculosis diagnostic tool that is compatible with the needs of tuberculosis-endemic settings is a long-sought goal. An immunofluorescence microtip sensor is described that detects Mycobacterium tuberculosis complex cells in sputum in 25 minutes. Concentration mechanisms based on flow circulation and electric field are combined at different scales to concentrate target bacteria in 1 mL samples onto the surfaces of microscale tips. Specificity is conferred by genus-specific antibodies on the microtip surface. Immunofluorescence is then used to detect the captured cells on the microtip. The detection limit in sputum is 200 CFU mL(-1) with a success rate of 96%, which is comparable to PCR.


PLOS ONE | 2014

Optimizing Viable Leukocyte Sampling from the Female Genital Tract for Clinical Trials: An International Multi-Site Study

Lyle R. McKinnon; Sean M. Hughes; Stephen C. De Rosa; Jeffrey Martinson; Jill Plants; Kirsten E. Brady; Pamela P. Gumbi; Devin J. Adams; Lucia Vojtech; Christine G. Galloway; Michael Fialkow; Gretchen M. Lentz; Dayong Gao; Zhiquan Shu; Billy Nyanga; Preston Izulla; Joshua Kimani; Steve Kimwaki; Alfred Bere; Zoe Moodie; Alan Landay; Jo-Ann S. Passmore; Rupert Kaul; Richard M. Novak; M. Juliana McElrath; Florian Hladik

Background Functional analysis of mononuclear leukocytes in the female genital mucosa is essential for understanding the immunologic effects of HIV vaccines and microbicides at the site of HIV exposure. However, the best female genital tract sampling technique is unclear. Methods and Findings We enrolled women from four sites in Africa and the US to compare three genital leukocyte sampling methods: cervicovaginal lavages (CVL), endocervical cytobrushes, and ectocervical biopsies. Absolute yields of mononuclear leukocyte subpopulations were determined by flow cytometric bead-based cell counting. Of the non-invasive sampling types, two combined sequential cytobrushes yielded significantly more viable mononuclear leukocytes than a CVL (p<0.0001). In a subsequent comparison, two cytobrushes yielded as many leukocytes (∼10,000) as one biopsy, with macrophages/monocytes being more prominent in cytobrushes and T lymphocytes in biopsies. Sample yields were consistent between sites. In a subgroup analysis, we observed significant reproducibility between replicate same-day biopsies (r = 0.89, p = 0.0123). Visible red blood cells in cytobrushes increased leukocyte yields more than three-fold (p = 0.0078), but did not change their subpopulation profile, indicating that these leukocytes were still largely derived from the mucosa and not peripheral blood. We also confirmed that many CD4+ T cells in the female genital tract express the α4β7 integrin, an HIV envelope-binding mucosal homing receptor. Conclusions CVL sampling recovered the lowest number of viable mononuclear leukocytes. Two cervical cytobrushes yielded comparable total numbers of viable leukocytes to one biopsy, but cytobrushes and biopsies were biased toward macrophages and T lymphocytes, respectively. Our study also established the feasibility of obtaining consistent flow cytometric analyses of isolated genital cells from four study sites in the US and Africa. These data represent an important step towards implementing mucosal cell sampling in international clinical trials of HIV prevention.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

A Dilution-Filtration System for Removing Cryoprotective Agents

Xiaoming Zhou; Zhong Liu; Zhiquan Shu; Weiping Ding; Pingan Du; Jae Hyun Chung; Carolyn Liu; Shelly Heimfeld; Dayong Gao

In most cryopreservation applications, the final concentrations of cryoprotective agents (CPAs) must be reduced to biocompatible levels. However, traditional methods for removing CPAs usually have disadvantages of operation complexity, time consumption, and ease of contamination, especially for the applications involving large volumes of cell suspensions. A dilution-filtration system, which involves pure ultrafiltration for separation, was developed for continuous, automatic, and closed process of removing CPAs. To predict the optimal protocols under given experimental conditions, a theoretical model was established first. Cell-free experiments were then conducted to investigate the variation in CPA concentration during the process, and the experimental data were compared with the theoretical values for the validation of the model. Finally, ten units (212.9 ml/unit±9.5 ml/unit) of thawed human red blood cells (cryopreserved with 40% (w/v) glycerol) were deglycerolized using the theoretically optimal operation protocols to further validate the effectiveness and advantage of the system. In the cell-free experiments, glycerol was continuously removed and the concentration variations fitted the simulated results quite well. In the in-vitro experiments, glycerol concentration in RBC suspension was reduced to 5.57 g/l±2.81 g/l within an hour, and the cell count recovery rate was 91.19%±3.57%, (n=10), which proves that the system is not only safe for removing CPAs, but also particularly efficient for processing large-scale samples. However, the operation parameters must be carefully controlled and the optimal protocols should be specialized and various from case to case. The presented theoretical model provides an effective approach to find out the optimal operation protocols under given experimental conditions and constrains.


Cytotherapy | 2010

Development of a reliable low-cost controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells

Zhiquan Shu; Xianjiang Kang; Hsiu-Hung Chen; Xiaoming Zhou; Jester Purtteman; David Yadock; Shelly Heimfeld; Dayong Gao

BACKGROUND AIMS An optimal cooling rate is one of the critical factors influencing the survival of cells during cryopreservation. We describe a novel device, called the box-in-box, that has been developed for optimal cryopreservation of human hematopoietic stem cells (HSC). METHODS This work presents the design of the device, a mathematical formulation describing the expected temperature histories of samples during the freezing process, along with actual experimental results of thermal profile tests. In experiments, when the box-in-box device was transferred from room temperature to a -80 degrees C freezer, a cooling rate of -1 to -3.5 degrees C/min, which has been widely used for the cryopreservation of HSC, was achieved. In order to evaluate this device further, HSC cryopreservation was compared between the box-in-box device and a commercially available controlled-rate freezer (CryoMed). RESULTS The experimental data, including total cell population and CD34(+) hematopoietic progenitor cell recovery rates, viability and cell culture colony assays, showed that the box-in-box worked as well as the CryoMed instrument. There was no significant difference in either survival rate or the culture/colony outcome between the two devices. CONCLUSIONS The box-in-box device can work as a cheap, durable, reliable and maintenance-free instrument for the cryopreservation of HSC. This concept of a box-in-box may also be adapted to other cooling rates to support cryopreservation of a wide variety of tissues and cells.


Journal of Clinical Microbiology | 2012

Cryopreservation of Mycobacterium tuberculosis Complex Cells

Zhiquan Shu; Kris M. Weigel; Scott D. Soelberg; Annie Lakey; Gerard A. Cangelosi; Kyong Hoon Lee; Jae Hyun Chung; Dayong Gao

ABSTRACT Successful long-term preservation of Mycobacterium tuberculosis cells is important for sample transport, research, biobanking, and the development of new drugs, vaccines, biomarkers, and diagnostics. In this report, Mycobacterium bovis bacillus Calmette-Guérin and M. tuberculosis H37Ra were used as models of M. tuberculosis complex strains to study cryopreservation of M. tuberculosis complex cells in diverse sample matrices at different cooling rates. Cells were cryopreserved in diverse sample matrices, namely, phosphate-buffered saline (PBS), Middlebrook 7H9 medium with or without added glycerol, and human sputum. The efficacy of cryopreservation was quantified by microbiological culture and microscopy with BacLight LIVE/DEAD staining. In all sample matrices examined, the microbiological culture results showed that the cooling rate was the most critical factor influencing cell viability. Slow cooling (a few degrees Celsius per minute) resulted in much higher M. tuberculosis complex recovery rates than rapid cooling (direct immersion in liquid nitrogen) (P < 0.05). Among the three defined cryopreservation media (PBS, 7H9, and 7H9 plus glycerol), there was no significant differential effect on viability (P = 0.06 to 0.87). Preincubation of thawed M. tuberculosis complex cells in 7H9 broth for 20 h before culture on solid Middlebrook 7H10 plates did not help the recovery of the cells from cryoinjury (P = 0.14 to 0.71). The BacLight LIVE/DEAD staining kit, based on Syto 9 and propidium iodide (PI), was also applied to assess cell envelope integrity after cryopreservation. Using the kit, similar percentages of “live” cells with intact envelopes were observed for samples cryopreserved under different conditions, which was inconsistent with the microbiological culture results. This implies that suboptimal cryopreservation might not cause severe damage to the cell wall and/or membrane but instead cause intracellular injury, which leads to the loss of cell viability.


Clinics in Plastic Surgery | 2015

Update on Cryopreservation of Adipose Tissue and Adipose-derived Stem Cells

Zhiquan Shu; Dayong Gao; Lee L.Q. Pu

This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques.


PLOS ONE | 2014

Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

Shinnosuke Inoue; Annie L. Becker; Jong Hoon Kim; Zhiquan Shu; Scott D. Soelberg; Kris M. Weigel; Morgan Hiraiwa; Andrew M. Cairns; Hyun Boo Lee; Clement E. Furlong; Kieseok Oh; Kyong Hoon Lee; Dayong Gao; Jae Hyun Chung; Gerard A. Cangelosi

An occupationally safe (biosafe) sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 106-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.


Biomedical Microdevices | 2011

Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions

Xin M. Liang; Weiping Ding; Hsiu-Hung Chen; Zhiquan Shu; Gang Zhao; Hai Feng Zhang; Dayong Gao

Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5%). The microfabricated thermal conductivity sensor offers superior characteristics compared to those traditional macroscopic thermal sensors, such as, (a) reduced thermal mass and thermal resistivity, (b) improved thermal contact between sensor and sample, (c) easy to manufacture with mass production capability, (d) flexibility to reconfigure sensor geometries for measuring samples with various sizes and shapes, and (e) reduced calibration workload for all sensors microfabricated from the same batch. The MEMS based thermal conductivity sensor is a promising approach to overcome the inherent limitations of existing macroscopic devices and capable of delivering accurate thermal conductivity measurement of biomaterials with various shapes and sizes.


Biopreservation and Biobanking | 2010

Theoretical and Experimental Analyses of Optimal Experimental Design for Determination of Hydraulic Conductivity of Cell Membrane

Xiaoming Zhou; Frank Gao; Zhiquan Shu; Jae Hyun Chung; Shelly Heimfeld; Dayong Gao

Determination of cell hydraulic conductivity (Lp) is required to predict the optimal conditions for cell cryopreservation. One of the critical procedures associated with the determination of Lp is to measure the kinetics of cell volume change in response to a sudden cell exposure to anisosmotic media until the cells achieve an osmotic equilibrium state. To achieve accurate measurement, it should be ensured that (1) the cell osmotic equilibration process is sufficiently slow, and (2) the total cell volume change (ΔV) is much larger than the resolution of the measuring device (δ). In this article, a cells half volume excursion time (t*) was defined as the time in which osmotically active cell water volume increases or decreases by half of its maximum change. Based on the water transport equations, a series of analytical solutions were derived. The t* and ΔV were expressed as functions of 2 control variables: initial intracellular osmolality (Mo) and extracellular osmolality (Me), and the effects of Me and Mo on t* and ΔV were predicted theoretically. The predictions were confirmed by performing experiments using two different cell types. In the light of this study, a strategy to optimize the experiment design for the Lp determination is suggested.

Collaboration


Dive into the Zhiquan Shu's collaboration.

Top Co-Authors

Avatar

Dayong Gao

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhou

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Cifeng Fang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jae Hyun Chung

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Shelly Heimfeld

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gang Zhao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Weiping Ding

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Florian Hladik

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong Hoon Kim

Washington State University Vancouver

View shared research outputs
Researchain Logo
Decentralizing Knowledge